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Abstract
Rising CO2, global warming, and N deposition create challenging environmental condi-
tions to vegetation. Since elevated CO2 and rising temperature are coupled with each 
other, it is important to understand their combined effects on plants. We investigated the 
growth and photosynthetic responses of yellow birch to five levels of nitrogen supply 
under the current (cCT: current CO2 and temperature) and the predicted future CO2 and 
temperature conditions (fCT: elevated CO2, current + 4℃ temperature). The results show 
that fCT and high N supply increased seedling growth but fCT reduced photosynthetic 
capacity (e.g., maximum rate of Rubisco carboxylation-Vcmax, maximum rate of photo-
synthetic electron transport-Jmax)) and foliar N concentration. However, the magnitude 
of the fCT effect declined with increases in N supply. Furthermore, the fCT treatment 
significantly reduced the Jmax/Vcmax ratio, indicating a possible shift of N allocation from 
Jmax to Vcmax in the photosynthetic machinery. This result suggests that the photosynthesis 
of yellow birch may be more limited by electron transport under the predicted future 
climate condition. Both low N supply and fCT significantly increased photosynthetic N 
use efficiency (PNUE) and there was a negative relationship between PNUE and photo-
synthetic capacity. In general, yellow birch grew better under fCT than cCT, particularly 
above-ground growth.

Keywords Climate change · Elevated CO2 · Global warming · Yellow birch (Betula 
costata Trauty.) · Photosynthetic acclimation · Nitrogen use efficiency
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Introduction

It is predicted that the atmospheric CO2 concentration and temperature will continue rise 
to until the end of the 21st century (Dai et al. 2020). Climate change will continue to have 
a escalating impact on forests (Newaz et al. 2021; Sperry et al. 2019). Elevated CO2 and 
warming are major drivers of global change and may interact with increases in soil nutrient 
supply associated with increased nitrogen deposition (García P. et al. 2015; M. G. R. et al. 
1998; Penuelas et al. 2020). CO2 elevation and climate warming occur simultaneously and 
are closely related to each other (Jayawardena et al. 2019). It is therefore critical to better 
understand their combined effects.

Recent studies have found that elevated CO2 and warmer temperature can increase or 
decrease the cycling(Dai et al. 2020; Maxwell et al. 2022) and availability of soil nutrients 
in boreal forests, depending on the specific site conditions (Karst et al. 2021). Elevated CO2 
and higher temperature can lead to the acclimation of photosynthesis and growth in plants 
(Jauregui et al. 2015; Wang et al. 2022b) and change the functional relationships between 
photosynthetic parameters and foliar N (Cai et al. 2018). Therefore, a good understanding 
of the combined effect of elevated CO2 and warmer temperatures on plants may be more 
important than understanding their individual effects for predicting the overall impact of 
future climate change on vegetation (Dusenge et al. 2019; Noyce et al. 2019). Some studies 
found that elevated CO2 and warmer temperature synergistically affect plant growth and 
stress resistance(Apgaua et al. 2019) while others have reported that they have opposite 
effects on plant growth and N metabolism, and that their individual effects can offset each 
other at least partially when the two treatments are applied simultaneously (Sharwood et al. 
2017), making it difficult to use individual effects to predict their combined effects (Kim et 
al. 2019). Furthermore, it is generally not well understood how the combination of elevated 
CO2 and warmer temperature will interact with other environmental factors such as N avail-
ability in affecting plants.

A good understanding of the relationship between photosynthetic acclimation to the com-
bination of elevated CO2 and temperature and N availability may be critical for predicting 
plants’ growth and productivity under future climate conditions, particularly on sites with 
different nitrogen conditions(Tausz-Posch et al. 2020; Zhao et al. 2021). There are compli-
cated relationships and interactions involved in carbon and nitrogen (N) metabolisms (Pas-
tore et al. 2020). N supply can play a dominant role in photosynthetic responses to elevated 
CO2 and temperature (Ryan 2013). Furthermore, elevated CO2 and warmer temperature can 
accelerate the mineralization rates of soil nutrients but reduce nutrient uptake by plants (Dai 
et al. 2020). However, elevated CO2 can cause a reduction in leaf N concentration because 
elevated CO2 increases biomass production and thus dilutes leaf N (Andrews et al. 2019). 
Furthermore, elevated CO2 can reduce photorespiration and thus lead to reductions in N 
assimilation and NO3

− metabolism which are associated with photorespiration (Wujeska-
Klause et al. 2019). While warming alone or in combination with elevated CO2 reduce 
N uptake, warming can lead to increases in leaf N concentration (Sharwood et al. 2017). 
However, the interactive effects of elevated CO2 and temperature with other environmental 
factors on physiological processes and morphological traits are still poorly understood for 
most tree species (Shrestha et al. 2015). A good understanding of such interactions may 
be critically important for predicting the performance of plants under the predicted future 
climate conditions.
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Yellow birch  (Betula costata Trautv.) is a deciduous tree species in the northern temper-
ate zone (Delagrange et al. 2004). It is not only an important hardwood species for wood 
production but is also rich in bioactive substances. Its leaf extract has potential applications 
in food, pharmaceutical, and cosmetic industries (Lavoie and Stevanovic 2005). However, 
yellow birch may be highly vulnerable to global change because of its shallower root system 
and higher mortality rates in degraded stands(Cox and Zhu 2003), and its ecophysiological 
responses to climate change are not well understood. This study explored the mechanisms 
of growth and physiological acclimation of yellow birch to the predicted future CO2 and 
temperature under different N availabilities. We tested the hypotheses that birch trees grow-
ing under higher nitrogen supplies would benefit more from elevated CO2 and warmer tem-
perature and that trees would be more tolerant of low nitrogen stress when growing under 
elevated CO2 and warmer temperature.

Materials and methods

Plant materials and treatments

Yellow birch seeds were collected from 10 natural trees (healthy and about 15 cm in DBH) 
from a forest stand in the Changbai Mountain forest region (42.12°N, 127.51°E) of China 
and the trees were at least 100 m apart from each other. The seeds were sown in germina-
tion trays filled with vermiculite and peat moss mixture (1:1 volume ratio) at the Lakehead 
University Forest Ecology Research Complex (Thunder Bay campus, Ontario, Canada). 
Three-week-old seedlings were transplanted into 3.5 L pots (1 seedling per pot) filled with 
the same growing medium mixture as the one used for germination.

Experimental design and treatments

The experiment was a split-plot design with the CO2-temperature combination treatment as 
the whole plot and nitrogen supply as the split plot. The current CO2-temperature treatment 
(cCT) was set at 400 µmol mol− 1 CO2 and 25ºC/16ºC day/night temperatures while the 
future CO2-temperature treatment (fCT) was set at 750 µmol mol− 1 CO2 and 29ºC/21ºC. 
The 25ºC/16ºC day/night temperature and 16 h photoperiod represent the optimal condi-
tions for the species. The CO2 elevation and the 4 ºC warming in the fCT treatment were the 
predicted conditions at for the end of the 21st century (Dusenge et al. 2020). The cCT and 
fCT treatments were randomly assigned to four greenhouses (2 independent replicates for 
each treatment). The split plots consisted of five levels of nitrogen supply: 10, 80, 150, 220 
and 290µmol mol− 1 N (to be referred to as N1, N2, N3, N4, N5, respectively, hereafter). 
N1-N4 represent the range of soil N in the natural sites of the species (Cao et al. 2007). 
Ammonium nitrate (NH4NO3) was used as the nitrogen sources in all the nitrogen treat-
ments (BioBasic Inc. 20 Konrad Crescent, Markham, ON, Canada). The concentrations of 
other nutrient elements were the same in all the nitrogen treatments (60 µmol mol− 1 P, 150 
µmol mol− 1 K, 4 ml L− 1 pH-Perfect Micro micronutrients (Advanced Nutrients, 109 Wheel 
Avenue, Abbotsford, BC, Canada). There were 12 seedlings per treatment combination (per 
replicate). The seedlings within the same split-plot were spaced far enough from each other 
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to avoid mutual shading. The seedlings were fertilized twice a week (500 ml) and were 
watered to the drip point every two days.

The environmental conditions in all the greenhouses (i.e., temperature, light, photope-
riod, CO2, and humidity) were monitored and controlled with an Argus Titan Environment-
Control System (Argus Control Systems Ltd, Vancouver, BC, Canada). The CO2 elevation 
was achieved using CO2 generators (model GEN-2E; Custom Automated Products Inc., 
Riverside, California, USA).

Gas exchange measurements and parameters

After two months of treatment, three seedlings were randomly selected from each replicate 
of each treatment (six seedlings per treatment combination) and A/Ci curves were measured 
on the first fully expanded leaf from the top at 400, 300, 200, 150, 100, 50, 400, 500, 750, 
900, 1100, and 1300, µmol mol− 1 CO2 (Ca) using a PP-Systems CIRAS-3 Portable Pho-
tosynthesis System equipped with a PLC3 Universal Leaf Cuvette with automatic climate 
control (flow rate: 300 cc min− 1) and a built-in CFM-3 Chlorophyll Fluorescence Module 
(PP Systems International, Inc. Amesbury, MA, USA). The photosynthetic rate at growth 
()i.e. treatment) CO2 (An−g) was measured at the beginning of the A/Ci curve measurement 
at 400 µmol mol− 1 and 750 µmol mol− 1 CO2, respectively, for the cCT and fCT treatment. 
Other conditions in the leaf cuvette were 25 °C temperature, 800 µmol m–2 s–1 photosyn-
thetically active radiation flux density (the measured saturating PAR was about 550 µmol 
m–2 s–1) and 50% RH.

The maximum rate of Rubisco carboxylation (Vcmax, µmol m− 2 s− 1) and maximum rate 
of photosynthetic electron transport (Jmax, µmol m− 2) were estimated using the Planteco-
phys fitaci function of the R package from A/Ci data (Duursma 2015). The initial slope of 
the A/Ci curve was used as an estimate of the apparent carboxylation efficiency (ACE) and 
the X-axis intercept of the A/Ci curve was used as an estimate of the CO2 compensation 
point (CCPaci). The transition point (Ci−t, An−t) between the Rubisco limitation and RuBP 
regeneration limitation of photosynthesis was obtained from the A/Ci curve using findCi-
Transition of the plantecophys R package (Duursma 2015).

Growth and biomass allocation

All the seedlings were harvested after four months of treatments and total leaf area per 
seedling was determined using a Regent WinFolia system (Regent Instruments Inc., Quebec 
City, QC, Canada). The plant materials were oven-dried at 75 °C for 48 h to obtain leaf 
biomass, leaf mass ratio (LMR = leaf mass/total biomass), stem mass ratio (SMR = stems 
mass/total biomass), root mass ratio (RMR = root mass/total biomass), and specific leaf area 
(SLA = leaf area/leaf mass).

Leaf nitrogen

Leaf N concentration was assayed using the dry combustion method using a CNS-2000 
(LECO Corp., St. Joseph, MI, USA) by the Lakehead University Centre for Analytical 
Services. Leaf-area based N concentration (Narea, g m− 2) was calculated by dividing the 
mass-based leaf N concentration (Nmass, mg g− 1) by the specific leaf area. The total leaf N 
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content per plant (Nleaf, mg plant− 1) was calculated by multiplying Nmass (mg g− 1) by the 
total leaf mass of the seedling (g− 1). Photosynthetic N use efficiency (PNUE) was calculated 
as An−g/Narea.

Statistical analyses

The data were analyzed using two-way analysis of variance (ANOVA) for split-plot design. 
Tests show that all the variables met the two ANOVA assumptions: the normality of distri-
bution (using probability plots for residuals) and the homogeneity of variance (using scat-
ter plots). Tukey-HSD post hoc pairwise comparisons of means were conducted when the 
ANOVA showed a significant interaction (p ≤ 0.05). Principal component analysis (PCA) 
was applied to all the physiological and biomass parameters using the PCA function of the 
FactoMineR package. All the analyses were performed using the R Package 4.0.6.

Results

Growth and biomass allocation

Seedling biomass and total leaf area both increased progressively with increasing soil N 
availability and the increases were much bigger under fCT than cCT (Table 1; Fig. 1a and 
b). The fCT treatment increased biomass and total leaf area and the increases were progres-
sively bigger with increasing N supply but not statistically significant at the two lowest N 
levels (Fig. 1a and b). The fCT significantly increased SLA (Fig. 1c). SLA was significantly 
greater in the two highest than the two lowest N levels (Fig. 1d). In contrast, fCT and 
increasing N supply both reduced RMR (Fig. 1e and f). SMR generally showed an increas-
ing trend with increases in N supply while fCT significantly increased SMR only at the 
intermediate and higher levels of N supply (Fig. 1g). LMR showed a general, but weak trend 
of increases with increasing N supply (Fig. 1h).

Photosynthesis and limiting transition point

The CT and N interactively affected Vcmax (Table 1): fCT generally decreased Vcmax and 
the decreases were greater at lower N supplies but not statistically significant at N4 and 
N5 (Fig. 2a); increasing N supply generally increased Vcmax only under the fCT treatment 
(Fig. 2a). The fCT treatment strongly reduced Jmax and Jmax/Vcmax ratio (Fig. 2b and d); Jmax 
was significantly lower at the lowest N supply (N1) than at other N levels and there were 
no significant differences in Jmax among other N supplies (Fig. 2c). The fCT significantly 
increased the photosynthetic rate at the growth CO2 concentration at the two highest N 
supplies (Table 1; Fig. 2e). The fCT significantly decreased ACE at all N levels, and the 
response pattern were similar to that of Vcmax (Fig. 2a and f).

Both, fCT and the lowest N supply, significantly reduced An−t but there were no signifi-
cant differences in An−t among other N supply levels (Table 1; Fig. 3a and b). The response 
patterns of An−t (Fig. 3a and b) were similar to those of Jmax (Fig. 3a and b). Ci−t was interac-
tively affected by CO2-temperature and N treatment, but no clear response pattern could be 
identified although it appeared to have decreased with increasing N supply (Fig. 3c).
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Leaf nitrogen and photosynthetic N use efficiency

Generally, fCT generally reduced Narea but the effect was only statistically significant at the 
intermediate N supply (Table 1; Fig. 4a). The interaction significantly affected Narea but no 
clear response patterns could be identified although Narea appeared to increase with increas-
ing N supply under fCT (Fig. 4a). The total N content per seedling, in contrast, increased 
almost linearly with increasing N supply from the lowest to the highest level under fCT but 
from the lowest to the second highest N level under cCT while fCT significantly increased 
Narea only at the two highest N supply levels (Fig. 4b).

The fCT significantly increased PNUE (Fig. 4c) and PNUE decreased with increasing N 
supply from the lowest (N1) to the intermediate (N3) N supplies and did not change signifi-
cantly as N supply increased from N3 to N5 (Fig. 4d).

Principal component analysis (PCA)

The PCA results revealed that seedlings grown under cCT were clustered in the upper left 
ellipse while those in the fCT were clustered in the lower right ellipse; the upper left cluster 
was characterized by parameters associated with high photosynthetic capacity and high leaf 
N; the lower right cluster was characterized by high seedling biomass, high total leaf area, 
high total foliar N content and high shoot mass ratio, and those variables were negatively 
correlated to PNUE (180 degrees in arrow direction in Fig. 5a).

PCA results also show that high PNUE was closely associated with the ellipse of seed-
lings in the N1 treatment and was negatively correlated with parameters related to high 
photosynthetic capacity and high total leaf N content (Fig. 5b). With increases in N supply 
level, seedlings tended to cluster in the ellipse characterized by high growth parameters 
which were negatively correlated to RMR (arrows pointing opposite directions in Fig. 5b).

Discussion

Growth stimulation by fCT and Nitrogen

Elevated CO2 and warmer temperature predicted for the end of the 21st century substantially 
increased the seedling biomass and total leaf area of yellow birch seedlings and the effects 
were synergistically magnified by higher nitrogen supplies. These results are in general 
agreement with the literature for other plant species (Hu et al. 2021; Liang et al. 2020). Plant 
growth is generally interactively affected by multiple factors (Green and Keenan 2022). 
The magnitudes of increases in total seedling biomass and total leaf area by fCT increased 
dramatically with increasing N supply in yellow birch seedlings. Furthermore, the increases 
were primarily concentrated on aboveground organs, leading to increased shoot mass ratios 
in seedlings grown under fCT. Higher total leaf nutrient content in fCT than cCT implies 
higher rates of nutrient uptake under the elevated CO2 and warmer temperature, which pre-
sumably contributed to the higher growth.

The increases in total leaf area and shoot mass ratio represent the expansion of the canopy 
and growth momentum, which should permit the trees to further increase CO2 sequestration 
and carbohydrate production (Norby et al. 2022). This morphological acclimation presum-
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Fig. 2 Effects of CO2 & Temperature combination (CT) and nitrogen supply (N) on Vcmax (a), Jmax (b, 
d), Jmax/Vcmax (d), An−g (e), and ACE (f) in yellow birch. Means (± SE, n = 6 for panels a, e, f; n = 30 for 
panels b, d; n = 12 for panel c) with different letters are significantly different from each other (p ≤ 0.05). 
When the interaction was significant (p < 0.05 in Table 1), the values of each treatment combination were 
presented

 

Fig. 1 Effects of CO2 & temperature combination (CT) and nitrogen supply (N) on growth and biomass 
allocation of yellow birch. Biomass (a), Leaf area (b), SLA (c, d), RMR (e, f), SMR (g), LMR (h). Means 
(± SE, n = 6 for panels a, b, g, h; n = 30 for panel c, e; n = 12 for panel d, f) with different letters is sig-
nificantly different from each other (p ≤ 0.05). According to the P values in Table 1, only the values with 
significant differences are presented
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ably compensated for the downregulation of photosynthetic capacity, leading to higher bio-
mass production under the fCT treatment and thus more C sequestration (Cabon et al. 2022). 
This acclimation strategy, i.e., coordinated physiological and morphological acclimations, 
may represent an optimal carbon acquisition under future climate conditions (Smith and 
Keenan 2020). Our results indicate that this acclimation strategy may be further magnified 
by increases in soil nutrient availability. The PCA results show that yellow birch seedlings 
grown under higher nutrient supplies clustered in a direction that is more favorable for 
growth and photosynthesis. Furthermore, our results indicate that sufficiently high soil N 
supplies could stimulate the growth and photosynthesis of yellow birch to a much greater 
extent under the predicted future CO2 and temperature than the current conditions. Such 
synergistical effects may increase the competitiveness of the species on nutrient rich sites 
in the future. In contrast, the result that fCT and N deficiency both increase NUE suggests 
that the species may be more tolerant of low N supplies in the future. The contrast effects of 
fCT and N on NUE, photosynthesis and growth are further demonstrated by the PCA results. 
These results suggest that increases in soil nutrient availability will likely synergistically 
increase the growth of yellow birch under the predicted future CO2 and temperature.

Photosynthetic acclimation was affected by leaf nitrogen concentration

Our data show that the combination of elevated CO2 and warmer temperature led to the 
down-regulation of photosynthetic capacity in yellow birch, which is consistent with the 
effect of elevated CO2 alone reported by other studies (Kanno et al. 2017; Ruiz-Vera et al. 
2017). The decline in the photosynthetic capacity of yellow birch seemed to be more attrib-
utable to the downregulation of Jmax than to that of Vcmax, because there was no significant 
difference in Vcmax between fCT and cCT treatments under N limited conditions (i.e., N1) 
and there were sharp declines in Jmax in seedlings grown under fCT (relative to those grown 
under cCT). Our results lend support to the theory that photosynthetic downregulation tends 
to occur when N supply is insufficient (Vicente et al. 2016).

Photosynthetic downregulation generally occurs when increases in growth stimulated by 
a factor lead to dilutions in leaf N concentration (Wujeska-Klause et al. 2019). Therefore, 
photosynthetic downregulation should be prevented or reduced if N supply is increased as 

Fig. 3 Effects of CO2 &Temperature combination (CT) and nitrogen supply (N) on transition point (Ci−t, 
An−t) between RuBP carboxylation to regeneration limitation from A/Ci of yellow birch. An−t (a, b), Ci−t 
(c). Means (± SE, n = 30 for panel a; n = 12 for panel b; n = 6 for penal c) with different letters are signifi-
cantly different from each other (p ≤ 0.05). According to the P values in Table 1, only the values with 
significant differences are presented
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growth increases to prevent or reduce the dilution of leaf N as demonstrated in this study. 
The fact that a large portion of leaf N is associated with the photosynthetic enzyme Rubisco 
explains the positive correlation between leaf N concentration and photosynthetic capacity 
in this and other studies (Luo et al. 2021). However, the increases in N supply in this study 
were not high to eliminate the diluting effect of increased seeding growth under fCT, lead-
ing to decreases in both leaf N concentration and photosynthetic capacity even in seedlings 
exposed to the highest N supply in this study.

The photosynthetic acclimation and changes in leaf N concentration also reflect the inter-
action between CO2 fixation and N assimilation in plants. On the one hand, photosynthesis 
requires proteins provided by N assimilation. On the other hand, N assimilation requires 
the C skeleton, energy, and reductants produced by photosynthesis (Zhao et al. 2021). This 
mutual supply-demand relationship complicates the relationship between elevated CO2 and 

Fig. 4 Effects of CO2 & Temperature combination (CT) and nitrogen supply (N) on leaf N concentration 
(Narea, (a)), total plant leaf N content (Nleaf (b)) and photosynthetic nitrogen use efficacy (PNUE, (c) and 
(d)). (Means ± SE, n = 6 for panel a and b; n = 30 for panel c; n = 12 for panel d) with different letters are 
significantly different from each other (p ≤ 0.05). According to the P values in Table 1, only the values 
with significant differences are presented
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Fig. 5 Principal Component Analysis (PCA, using FactoMineR package in R) of growth and photosyn-
thetic parameters. The biaxial diagrams were generated by the factoextra package in R. The ellipses 
indicate CO2 & Temperature combination treatment (CT) clustering, cCT and fCT represented current 
and future CT conditions (a), while the ellipses indicate nitrogen (N) treatments clustering, N1 to N5 
represents from lower to higher levels (in degree of gray) of nitrogen supply (b). The parameters within 
the same ellipse were closely correlated with each other; parameters with arrows pointing to similar direc-
tions were positively correlated while those with arrows pointing to opposite directions were inversely 
correlated to each other; a smaller angle between two arrow lines indicates a closer correlation between 
the two parameters. Abbreviations: RMR: root mass ratio; SMR: stem mass ratio; LMR: leaf mass ratio; 
Narea: leaf N per unit area; Nleaf: total N of the whole-plant leaf; PNUE: photosynthetic nitrogen use ef-
ficiency; An−g: net photosynthesis rate at grow Ca which fCT treatment at 750 µmol mol− 1 (An−gCT750) 
and cCT treatment at 400 µmol mol− 1 (An−gCT400); Vcmax: maximum rate of ribulose-1,5-bisphosphate 
carboxylation; Jmax: maximum of photosynthetic electron transport rate; An−t: net photosynthesis rate at 
transition point (Ci−t, An−t) between Rubisco limitation and RuBP regeneration limitation based on A/Ci 
curve; ACE: apparent carboxylation efficiency
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N assimilation (Rubio-Asensio and Bloom 2017). This relationship may have contributed to 
the opposite effects of increased N supply and elevated CO2 on PNUE as well as the differ-
ent directions of ovals in the PCA results in this study.

Electron transport was the primary contributor to photosynthetic limitation under 
fCT

The precipitous descent of Jmax (55.9%) by fCT treatment resulted in a significant decrease 
in Jmax/Vcmax. This result suggests that under the combination of elevated CO2 and warmer 
temperature, photosynthesis of yellow birch might have been primarily limited by electron 
transport rather than Rubisco carboxylation, as suggested by (Smith and Keenan 2020). 
Jmax/Vcmax reflects the partitioning of N between electron transport and carbon fixation (Zhou 
et al. 2015) and the shift of primary photosynthetic limitation (Walker et al. 2014). It is 
found that elevated CO2 tends to increase Jmax/Vcmax (Smith and Keenan 2020) while warm-
ing generally decreases Jmax/Vcmax (Fernández-Marín et al. 2020; Stefanski et al. 2020). The 
fact that the Jmax/Vcmax ratio declined under fCT in this study suggests that thermal acclima-
tion was the predominant response mechanism to fCT in yellow birch. The results suggest 
that climate warming may weaken the effects of elevated CO2 on plant acclimation and may 
even totally offset the effect of elevated CO2 (Sharwood et al. 2017). Since elevated CO2 
and warming are coupled to each other under the predicted future climate conditions, the 
photosynthesis of yellow birch may be more limited by electron transport as suggested by 
the result of this study and those of some other studies (Slot et al. 2021).

Jmax and An−t were closely related to each other and showed similar response patterns 
to all the treatments in this study. An−t represents the photosynthetic rate at the transition 
point of the primary limitation to photosynthesis between Rubisco carboxylation and RuBP 
regeneration. Its close relationship with Jmax implies the dominant role of Jmax in the transi-
tion process under fCT treatment (Stefanski et al. 2020). For a given tree species and under 
certain environmental conditions, the transition point of photosynthetic limitation is gener-
ally a function of Vcmax, Jmax, Jmax/Vcmax, gm, and Rd (Miao et al. 2009). Therefore, our results 
appear to suggest that the fCT-induced shift of photosynthetic limitation in yellow birch was 
primarily a result of the decline in Jmax.

Conclusions

This study investigated the growth and photosynthetic characteristics of yellow birch 
exposed to simulated future CO2 and temperature (fCT) under different levels of N supply. 
The results show that fCT and higher nitrogen supply had synergistical effects on seedling 
biomass production and growth momentum as indicated by the total leaf area, suggesting 
that yellow birch trees growing on nutrient rich sites will likely benefit more from the ele-
vated CO2 and warmer temperature in the future than those growing on nutrient poor sites. 
The results also suggest that fertilization may be more financially viable in the future for 
growing yellow birch. The synergistical effects are attributable to both morphological and 
physiological acclimations. Morphologically, trees grown under fCT and higher nitrogen 
had greater total leaf area per tree, greater specific leaf area, and greater total amount of leaf 
nitrogen. Physiologically, the trees grown in fCT and higher nitrogen supplies had smaller 
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downregulation of photosynthetic capacity and thus benefited more from the stimulation of 
photosynthesis by the elevated CO2. Furthermore, fCT significantly increased the nitrogen 
use efficiency of photosynthesis, making leaf nitrogen more productive in carbohydrate 
production. Lastly, fCT shifted the primary limitation of photosynthesis from Rubisco car-
boxylation to RuBP regeneration and thermal acclimation was the primary mechanism for 
this shift.
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