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1 Introduction

1.1 Fractals in Nature

Figure 1: Coastline of Britain

There are many fractals in nature. Most of
these have some level of self-similarity, and are
called self-similar objects. Basic examples of
these include the surface of cauliflower, the pat-
tern of a fern, or the edge of a snowflake. Benoit
Mandelbrot (considered to be the father of frac-
tals) thought to measure the coastline of Britain
and concluded that using smaller units of mea-
surement led to larger perimeter measurements.
Mathematically, as the unit of measurement de-
creases in length and becomes more precise, the
perimeter increases in length. For any unit of
measurement 1/n we can use a smaller unit,
namely 1/(n+ 1). Moreover, the perimeter is
always getting larger; that is, it is always in-
creasing. Does this always increasing sequence
(measuring the coastline of Britain) converge or
diverge?

This leads to the paradoxical question: Can a finite area be enclosed by an infi-
nite length boundary? Can a finite volume be enclosed by an infinite surface area?
Solutions to these questions can be found in the study of fractals.

1.2 Mathematically Constructed Fractals

There are also many examples of fractals that are constructed mathematically. One
of the most famous examples is the triadic Cantor Dust set. This set is created via
the repeated deletion of the open middle third interval of a line segment. Another
very popular example is the Seirpinski Triangle (Figure 2). The von Koch snowflake
is another famous fractal (Figure 2). Many fractals can be constructed through an
iteration process and use self-similar shapes.

Take the von Koch snowflake as an example. Beginning with an equilateral triangle
one deletes the middle third of each side segment. Then two lines, equal to the
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(a) Sierpinski Triangle (b) Von Koch Snowflake

Figure 2: Mathematical Fractals

length of the deleted segment, are placed to create an outward facing “triangle” on
each of the original triangle sides. This process is repeated, thus forming “mountain
peaks” built on “mountain peaks”. Some fractals that are defined recursively are
called dragons.

As we will see later on, there are also fractals in the complex plane. These are often
created by inputting a complex number through a function and iterating the process.
The most popular of these types of fractals are Julia sets. The crowning glory of
fractals is the Mandelbrot set. The Mandelbrot set is the set of all c ∈ C where the
function fc(z) = z2 + c, when iterated from fc(0), does not diverge.

1.3 Motivation and Method

The necessity of fractional dimensions arise when we try to quantize the “size” of
certain sets that are not simple, and are often hard to conceptualize. For example:
The Sierpinski Triangle (sometimes called the Sierpinski gasket to convey geometric
qualities), which lies in a 2 dimensional plane, is created by tremas, and has zero area.
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Figure 3: Sk : k = 0, 1, ..., 5

The set Sk has 3k equilateral triangles in it, each with side length 2−k. Hence, the
total area is 3k × (2−k)2 ×

√
3/4. As k →∞ the total area converges to 0. Yet, the

line segments that form the borders of each triangle are never deleted. Therefore,
the set contains all those line segments. Again, the set Sk has 3k triangles, each with
3 sides of length 2−k meaning that the total perimeter of Sk is 3k × 3 × 2−k. As
k → ∞ the total perimeter length diverges to ∞. Hence, the Sierpinski Triangle is
a set which simultaneously: occupies 2 dimensional Euclidean space, has zero area
and is not 2 dimensional (is less than 2), and has a perimeter (boundary) of infinite
length. In a sense, one could imagine a disk in R2 being created by an infinitely
long spiral, thus implying that the filled in disk has infinite length and is actually
2-dimensional. Therefore, it seems that the dimension of the Sierpinski Triangle is
greater than 1 and less than 2. In 1919 Hausdorff proposed fractional dimensions
which would accurately describe the properties of some of these sets that border
on geometrical chaos [1]. These fractional dimensions would soon lead to a world
of mathematics lying between topology and measure theory, a world that seeks to
quantize roughness in such a way so as to manipulate and utilize roughness with
precision.

Thus far, we have discussed fractals in a very imprecise fashion. Fractals are much
more than the select few aesthetically appealing objects discussed. In order to uti-
lize fractals and understand them mathematically we will need a rigorous approach
with clear, precise definitions. To do this we must first become acquainted with
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some basic topology and measure theory. Through this study we will come to under-
stand dimension. More specifically, we shall investigate sets that have non-integer
dimension.

2 Basic Topology

There are a few powerful generalizations that can be made to help understand certain
sets. The investigation of fractals lies almost entirely within metric spaces which are
compact and separable.

2.1 Metric Spaces

We define a Metric space in the usual way. Let S be a set, paired with a function
ρ : S × S → [0,∞). If ρ(x, y) satisfies,

ρ(x, y) = 0⇔ x = y;
ρ(x, y) = ρ(y, x);
ρ(x, z) ≤ ρ(x, y) + ρ(y, z);

then S is a Metric space.

A few other helpful definitions that will be used later are the diameter of a set and
the distance between two sets.

Definition 2.1. The diameter of a subset A of a metric space S is

diam A = sup{ρ(x, y) : x, y ∈ A}.

In other words, the diameter of A is the distance between the two most distant points
of A, if such points exist. The diameter of a set will be a crucial form of measurement
used later to compute the Hausdorff dimension. The convex hull of any set A has
the same diameter as A itself. It should be noted here that the diameter of an open
set A is equivalent to the diameter of the closure of the set, A.

Definition 2.2. If A and B are nonempty sets in a metric space S, we define the
distance between them by

dist(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B}.
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The distance between two sets is the distance between the two closest possible points,
one in A and one in B, if such points exist.

It can be seen that if A∩B 6= Ø, then dist(A,B) = 0 because they share at least one
common element. One should also note however, that dist(A,B) = 0 does not imply
A ∩ B 6= Ø. That is, sets may have empty intersection, but still have zero distance,
despite not sharing any elements. For example, let A = (0, 1) and B = [1, 2]. Then
dist(A,B) = 0 and A ∩B = Ø.

The closure of a set A is the set A, comprised of A and all the accumulation points
of A. A set A ⊆ B may be called “dense in B” iff it’s closure is equivalent to B,
that is, A = B. Boundary points of A are those points that lie in A as well as
S\A. The boundary of A is the set of all boundary points, denoted ∂A.

We define the open ball centred at x with radius r > 0 as Br(x) = {y ∈ S : ρ(x, y) <
r} where ρ is a metric in the metric space.

When discussing topology one must consider homeomorphisms. One such collection
of homeomorphisms that are of particular interest are similarities. A function h :
S → T is a similarity iff there is a positive number r such that

ρ(h(x), h(y)) = rρ(x, y)

for all x, y ∈ S. The number r is the ratio of h. Two metric spaces are similar iff
there is a similarity of one onto the other. It is important to note that similarities are
continuous functions. In n-dimensional Euclidean space we have a wide selection of
similarities: translations, reflections, rotations, dilations, and translation-reflections.
We will revisit ratios and similarities in later sections.

From the Heine-Borel theorem we know that [a, b] ∈ R is a compact set. We also
know that closed and bounded sets in Rd are compact. For our study of fractals, we
will limit our investigation to compact sets.

Definition 2.3. A metric space S is called sequentially compact iff every se-
quence in S has at least one cluster point in S.

Definition 2.4. A metric space S is called complete iff every Cauchy sequence in
S converges in S.

Definition 2.5. Furthermore, suppose S and T are metric spaces. Let fn : S → T be
a sequence of functions, and let f : S → T . The sequence fn converges uniformly
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on S to the function f iff for ∀ε > 0,∃N ∈ N such that ∀x ∈ S and ∀n ≥ N we have
ρ(fn(x), f(x)) < ε.

2.2 String Spaces

Many fractals have topological properties that are preserved by homeomorphisms.
In particular, we may create homeomorphisms between a fractal and a sequence of
letters, called strings. We let the space of strings, denoted E(ω), be the set of infinite
strings consisting of letters from the set E = {α, β, γ...}. The set E(n) will denote
the set of strings with length n. We further assign a useful metric ρ1/2 to the set
E(ω) to create a metric space. This will allow us to compare “closeness” of these
elements.

Example: Let E = {0, 1} and σ, τ ∈ E(ω). If σ = τ , then ρ1/2(σ, τ) = 0. If σ 6= τ ,
then there is a first letter they disagree on. There is a string, α, that consists of the
longest common prefix such that σ = ασ′ and τ = ατ ′. Let k be the length of that
longest common prefix, α. We then define

ρ1/2(σ, τ) = (1/2)k

The three properties of a metric space can be easily verified.

Remark: The space E(ω) of infinite strings from the alphabet {0,1} is compact and
complete under the metric ρ1/2(σ, τ) = (1/2)k.

Example: One can consider the Cantor set as E(ω) using an addressing function,
h : E(ω) → C. Here we have that E = {0, 1} and the Cantor set in R is written in
base 3 using 0’s and 2’s. Let σ = .011111 · · · and τ = .011000 · · · be infinite strings
in E(ω). Then h(σ) = (0.022222 · · · )3 = 9/27 ∈ C and h(τ) = (0.022000 · · · )3 =
8/27 ∈ C. In C ⊂ R we understand that the points 9/27 and 8/27 are separated
by a distance of 1/27. However, in E(ω), we may use the metric ρ to calculate the
distance between σ and τ . That is,

ρ1/2(σ, τ) = (1/2)3 = 1/8

since σ and τ have a common prefix of length k = 3.

Remark: The infinite string space can be intuitively understood to be a tree (a
binary tree if E has two elements, a ternary tree if E has three elements, etc).
Often, string spaces can help us to grasp qualities about a fractal that are not easily
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seen otherwise. The tree helps us visualize at what level do the points brach away
from one another.

Example: One could also let E = {L,U,R} and define an addressing function
h : E(n) → Sn, where Sn is the Sierpinski triangle with 3n triangles. The three
alphabetical letters: L, U , and R correspond with the left, upper and right triangles
of the Sierpinski triangle.

2.3 Hausdorff Metric

The Hausdorff Metric is quite powerful as it is a definition of a metric that applies
to sets, rather than points.

Let S be a metric space. Let A and B be subsets of S. We say that A and B are
within Hausdorff distance r of each other iff every point of A is within distance
r of some point of B, and every point of B is within distance r of some point of
A.

This idea can be made into a metric, called the Hausdorff metric, D. If A is a set
and r > 0, then the open r-neighborhood∗ of A is Nr(A) = {y ∈ S : ρ(x, y) <
r for some x ∈ A}.

Definition 2.6. Given two sets A,B ⊆ S we define the Hausdorff metric D :
D(A,B) = inf{r > 0 : A ⊆ Nr(B) and B ⊆ Nr(A)}. By convention, inf ∅ =∞.

Suppose that S is the Sierpinski triangle, and Sk is the Sierpinski triangle with
3k triangles in it. The sequence Sk actually converges to S in the sense that the
Hausdorff metric tends to 0.

Due to the fact that the Hausdorff metric does not define a metric with the three
classic requirements we will restrict our applications of D to nonempty compact sets
where indeed the Hausdorff metric is a metric. The Hausdorff metric is a metric
defined on sets, not points.

∗To be used to calculate covering dimension
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3 Topological Dimension

There are numerous elementary sets which are easy to categorize into integer di-
mensions. Points are zero dimensional, curves are one dimensional, surfaces are two
dimensional and solids are three dimensional. But we run into problems when we
consider sets with more complicated topology, composed of combinations of points,
curves, surfaces, and solids. In this section, we will define one helpful dimension
called the covering dimension, which will be useful in many situations. We continue
with some definitions in topology.

3.1 Refinement

Definition 3.1. If A and B are two collections of sets, we say that B is subordinate
to A ⇔ ∀B ∈ B ∃A ∈ A with B ⊆ A. Let S be a metric space, and let A be an open
cover of S. A refinement of A is an open cover B of S that is subordinate to A.
We also say say B refines A.

When we later compute the Hausdorff dimension, we will use refinements of a family
of sets such that we can have open covers B of S that are subordinate to open covers
A of S.

3.2 Zero-dimensional Spaces

Let S be a metric space. A set A ⊆ S is called a clopen set iff it is both open and
closed. A clopen partition of S is an open cover of S consisting of disjoint clopen
sets.

Theorem 3.2. The metric space S is zero-dimensional iff every finite open cover
of S has a finite refinement that is a clopen partition.

If S is finite, then S is zero-dimensional because we may form a finite refinement of
S that is a clopen partition by using each of the singletons, {x}, which on their own
are clopen sets that partition S.

Theorem 3.3. Let S be a compact metric space. S is zero-dimensional iff there is a
base for the topology of S consisting of clopen sets.
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The only clopen sets in R are Ø and R itself. Hence, we do not have a finite refinement
that is also a clopen partition. Therefore, R is not zero-dimensional.

Now suppose there are two zero-dimensional sets. What is the dimension of their
union? If Q and R\Q are zero-dimensional, then can we logically conclude that
R ≡ (Q) ∪ (R\Q) is one-dimensional as we might guess? But, the union of U = {1}
and V = {2}, both zero-dimensional, is U ∪V = {1, 2} which has a finite refinement
that is a clopen partition showing that U ∪ V is also zero-dimensional. There is a
logical sum theory when we restrict it to the union of closed sets.

Sum Theorem

Theorem 3.4. Let S be a metric space. Let U and V be closed sets in S. If U and
V are both zero-dimensional, then U ∪ V is zero-dimensional.

3.3 Covering Dimension

Let A be a family of sets and let n ≥ −1 be an integer. We define the order of A
to be the smallest n such that the intersection of any n+ 2 sets from A have empty
intersection.

As seen in Figure 4, one may cover the curve using disks in such a way such that any
three disks will have empty intersection. However, one could select two disks that
have non-empty intersection. The order of the open cover is 1 since any 3 of the sets
have empty intersection.

We say that S has covering dimension ≤ n ⇔ every finite open cover of S has a
refinement with order ≤ n. The covering dimension is n ⇔ the covering dimension
is ≤ n but not ≤ n − 1. We denote the covering dimension of S as Cov S = n or
Cov S =∞. Some literature calls this Lebesgue dimension, but due to the intuitive
meaning of the word “covering” we will use covering dimension.

Figure 4 has covering dimension 1, since the finite open cover (the set of disks) has
a refinement with order ≤ 1 but not ≤ 0.

Another concept that will be of help in forming refinement covers of a particular size
will be the cover’s mesh. Let A be a cover. We define the mesh of A to be supA∈A
diam A.

In subsection 3.2 we showed that finite sets are zero-dimensional. We also showed
that some infinite sets are also zero-dimensional. It can be shown that for a non-
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Figure 4: Disks covering a line

empty set S, Cov S = 0 ⇔ S is zero-dimensional as defined above. This shows
that covering dimension and the definition for zero-dimensional sets agree with one
another.

Sum Theorem: Earlier we had that the union of two zero-dimensional closed sets
was a zero-dimensional set. We can extend the sum theorem to 1-dimensional closed
sets.

Theorem 3.5. Let S be a metric space, and let U, V be closed subsets. If Cov U ≤ 1
and Cov V ≤ 1, then Cov (U ∪ V ) ≤ 1.

Theorem 3.6. Let S be a compact metric space and let n ≥ 1 be an integer. Then
Cov S ≤ n if and only if for every ε > 0, there is an open cover of S with order ≤ n
and mesh ≤ ε.

Theorem 3.7. If T ⊆ S, where S is a metric space, then Cov T ≤ Cov S.

In subsection 3.2, we showed that R is not zero-dimensional and hence Cov R ≥ 1.
We can also show Cov R ≤ 1, implying that Cov R = 1. We work with the closed
interval [0, 1] in R for now. Let ε > 0 be given and let n ∈ N such that (1/n) ≤ (ε/2).
Then we can have an open cover of [0, 1] by

{((k − 1)/n, (k + 1)/n) : k ∈ Z}

with mesh ≤ ε and order 1. Though we examined [0, 1] we simply extend this to the
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whole real line. This shows that Cov R ≤ 1. Therefore, Cov R = 1.

Example: The Sierpinski triangle, S, has covering dimension 1. We know that S
contains lines so Cov S ≥ 1. Now we must show Cov S ≤ 1. To do this we use
Theorem 3.6 and show that for every ε > 0, there is an open cover of Sk with order
≤ n and mesh ≤ ε. Let Sk be the Sierpinski triangle with 3k filled in triangles,
each with side length 2−k. For any given k, any two triangles share a corner point
or are within 2−k/(

√
3/2) of each other. We can make an open cover of Sk using

r-neighbourhoods of the triangles in Sk, where we let 0 < r < 2−k/
√

3. The open
cover comprised of r-neighbourhoods of each of the triangles intersect with each
other. However, any 3 = (1 + 2) r-neighbourhoods have empty intersection. Yet, we
can select two r-neighbourhoods that have non-empty intersection. This shows us
that we have a cover of Sk with order 1. Furthermore, the mesh is the supremum
diameter of all the sets in the open cover. Since they are all r-neighbourhoods of
triangles with side length 2−k we have that the mesh of each r-neighbourhood is
2−k + 2r < 2−k + 2(2−k/

√
3). Therefore, given ε > 0 we set k large enough such that

2−k+2(2−k/
√

3) < ε and make the open cover of the set Sk with the r-neighbourhoods
as defined above. Using Theorem 3.7 one can see that if S ⊆ Sk, where S is the
Sierpinski triangle, then Cov S ≤ Cov Sk. Since Cov Sk = 1 and Cov S ≥ 1 we
must have Cov S = 1.

4 Measure Theory

4.1 Outer/Inner Lebesgue Measure

For intervals in R of the form (a, b), (a, b], [a, b), [a, b], their length is b−a whenever
a < b.

Definition 4.1. Let A ⊆ R. The Lebesgue outer measure of A is obtained
by covering A with countably many half-open intervals of total length as small as
possible. In symbols, L(A) = inf

∑∞
j=1(bj−aj) where the infimum is over all countable

families {[aj, bj) : j ∈ N} of half-open intervals with A ⊆ ∪j∈N[aj, bj).

For any interval A, L(A) is the length of A. This can be proved for open, closed,
half-open, and half-closed intervals. The Lebesgue outer measure was achieved from
the outside of a set inward, covering a set in R with half open intervals. Similarly,
the Lebesgue inner measure will be achieved from the inside of the set outward.
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Definition 4.2. Let A ⊆ R. The Lebesgue inner measure of a set A is L(A) =
sup {L(K) : K ⊆ A,K is compact}

It can be shown that for any A ⊆ R we have L(A) ≤ L(A). We say that a set
A is Lebesgue measurable when L(A) = L(A). This equation, however, is not
generally true. When it is, we denote the Lebesgue measure of A as L(A).

The union of finitely many disjoint Lebesgue measurable sets is itself measurable
and its length is equal to the summation of each of the finitely many Lebesgue
measures.

It should be noted that compact subsets, closed subsets, and open subsets of R are
Lebesgue measurable. Some simple algebraic properties will help us down the road.
(1) Both Ø and R are Lebesgue measurable. (2) If A and B are Lebesgue measurable,
then R\A, A∪B, A∩B, and A\B are all Lebesgue measurable. (3) If An is Lebesuge
measurable for n ∈ N, then ∪n∈NAn and ∩n∈NAn are Lebesgue measurable (this holds
because these are countable unions and countable intersections).

Remark If A ⊆ B, then L(A) ≤ L(B)

Example: We can calculate the Lebesgue measure of the Cantor set. Let C be the
Cantor set and Cn be the set with 2n segments, each of length (1/3)n. Note that
C ⊆ Cn. We can see that as n→∞ we have L(Cn) = 2n ·3−n → 0, thus sandwiching
0 ≤ L(C) ≤ 0.

4.2 Carathéodory Measurability

Definition 4.3. A set A ⊆ R is Carathéodory measurable iff

L(E) = L(E ∩ A) + L(E \ A)

for all sets E ⊆ R.

For sets in R, Carathéodory measurablity and Lebesgue measurability are equivalent.

Theorem 4.4. Let A ⊆ R be Lebesgue measurable, and let a similarity f : R → R
with ratio r be given. Then f [A] is Lebesgue measurable and L(f [A]) = rL(A)∗.

∗Helpful in Section 5
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4.3 Two dimensional Lebesgue Measure

In R we used half-open intervals to measure the length of sets. In R2 we will use
rectangles. We define a rectangle R as

R = [a, b)× [c, d) = {(x, y) ∈ R2 : a ≤ x < b, c ≤ y < d}

for a ≤ b and c ≤ d. The area of this rectangle is c(R) = (b− a)(d− c).

A rectangle of the form R = [a, b) × [c, d), where a < b and c < d, is Lebesgue
measurable and L2(R) = (b− a)(d− c).

For sets in R2 that are not rectangular we use the usual approximating scheme of
little rectangles within the set. The two-dimensional Lebesgue measure will be equal
to the area.

Furthermore, we may have a function f : R2 → R2 that is a similarity with a
ratio r. Suppose A ⊆ R2 is Lebesgue measurable, then so is f [A], and L2(f [A]) =
r2L2(A).

Extending the Lebesgue measure to d-dimensional Euclidean space can be carried
out by using hyper-rectangles, R = [a1, b1)× · · · × [ad, bd), and thus calculating a
“hyper volume”, c(R) =

∏d
j=1(bj − aj).

5 Self-similarity

Many fractals have a level of self-similarity in their geometric composition. Segments
of the boundary may be composed of smaller scale segments of itself. The Sierpinski
gasket can be seen to be self-similar in that the large triangle is the same as one
of the three triangles composing the whole. In this section we will define our first
definition of dimension that will be used as a fractal dimension. We also define an
iterated function system which will help us efficiently specify many sets that we are
interested in.

5.1 Ratios

A ratio list is a finite list of positive numbers (r1, r2, · · · , rn). An iterated function
system realizing a ratio list (r1, r2, · · · , rn) in a metric space S is a list (f1, f2, · · · , fn),
where fi : S → S is a similarity with ratio ri.
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A nonempty compact set K ⊆ S is an invariant set for the iterated function system
(f1, f2, · · · , fn) iff K = f1[K] ∪ f2[K] ∪ · · · ∪ fn[K]. Examples of an invariant set
include the Cantor set and the Sierpinski gasket. We may also say that K is a set
attractor∗.

Definition 5.1. The sim-value of a ratio list (r1, r2, · · · , rn) is the positive number
s such that rs1 + rs2 + · · ·+ rsn = 1.

If ri < 1 for all i, then the ratio list is contracting or hyperbolic. The sim-
ilarity dimension, s, of a set K satisfies a self-referential equation of the type
K = ∪ni=1fi[K] where there is a hyperbolic iterated function system of similarities
whose ratio list has sim-value s. We must be careful here because the similarity
dimension is defined for a set AND an iterated function systems realizing a ratio list
for that particular set. That is to say that the sim-value of a particular set is not
unique†.

5.2 Examples and Calculations

Consider the interval [a, b]. The interval can be understood to be the union of two
smaller intervals, [a, (a+ b)/2] and [(a+ b)/2, b]. Each of these smaller intervals are
similar to the whole interval. Moreover, they have a ratio r = 1/2. Therefore, the
ratio list is (1/2, 1/2). The sim-value is the solution to the equation

(1/2)s + (1/2)s = 1

2(1/2)s = 1

so s = 1. Therefore, the similarity dimension is 1. This makes sense because one
naturally expects any interval on R to have dimension 1.

However, the interval [a, b] may also be written as [a, (a+2b)/3]∪[(2a+b)/3, b], which
corresponds to a ratio list (2/3, 2/3) and yields a similarity dimension larger than 1.
This reveals some of the limitations of similarity dimension. One of the limitations
is that the similarity dimension is actually based on the iterated function system
rather than the set itself, which causes problems when there are multiple different

∗The chaos game, described in section 5.3, played with 3 points, will eventually give a beautiful
picture of the Sierpinski gasket, illustrating that the Sierpinski gasket is an attractor because it
attracts these points to itself.
†See the Sierpinski example below
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iterated function systems to define a set, as seen above. Hence, a useful definition
for dimension will limit overlapping elements as desired.

Figure 5: Sierpinski Similarity Ratio

Sierpinski gasket: Upon examination one can see that the large triangle is com-
posed of three smaller triangles (left, upper, right), each of which are scaled down
to half the size (half the side length). See Figure 5. One can easily compute the
similarity dimension of the Sierpinski triangle and the corresponding natural iter-
ated function system. The ratio list is (1/2, 1/2, 1/2) because there are three copies
(fL, fU , fR), each scaled by 1/2. The sim-value is the solution to the equation

(1/2)s + (1/2)s + (1/2)s = 1

3(1/2)s = 1
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so s = (log 3)/(log 2) ≈ 1.585. Therefore, the similarity dimension is approximately
1.585.

As cautioned above, one could have a ratio list (1/2, 1/2, 1/2, 1/2) and say that the
four functions realizing those ratios are the left triangle, the upper triangle, the
right triangle and the right triangle again. That is fL, fU , fR, fR. Thus giving us
a sim-value of 2. This reveals that the similarity dimension on its own is not well
defined.

Cantor dust set: The Cantor set is likewise composed of two smaller line segments,
each of which are scaled down to half the length. Therefore, the ratio list is (1/3, 1/3).
The sim-value is (1/3)s + (1/3)s = 1, so s = (log 2)/(log 3) ≈ 0.631.

Although this notion of fractional dimension is very quick and easy to compute, it
has limiting restrictions. The set in question must have self similar attributes. Many
fractals, notably the very rough ones, do not have self similar attributes. The sim-
value is calculated for the set AND an iterated function system (which might have
overlap). Therefore, the similarity dimension is not well defined for many sets, even
simple sets such as a closed ball. When we are able to, we will compute fractional
dimensions using similarity dimension, but it will prove unhelpful for many sets.

5.3 Chaos Game

It seems weird to have a subsection entitled “Chaos Game” within a section about
self-similarity where you would think nothing chaotic happens. But we will see the
connection quickly.

There is a fascinating way to program the creation of many fractals, which will reveal
the intuitive meaning of “set attractor” very quickly. In a very general sense, one
may choose n points in Rd. Then, start the iteration process at any point x ∈ Rd.
From x, randomly choose (based on some probability) one of the n points and go
a fraction of the distance towards it (i.e. 1/2, 1/3, etc). This then becomes the
second point. Continue the random iteration over and over again, marking down
each point as you go. Though it seems that one has chosen arbitrary points and are
doing random movements, one will eventually create a fractal. That is, the iteration
process will attract each new point xi to lie in the fractal set, the set attractor.

As an example once again, the Sierpinski gasket can be created this way in just a
few steps (or lines of code).
(1) Let v1, v2, and v3 be the three corners of a triangle in R2.
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(2) Choose any point x0 ∈ R2.
(3) Move 1/2 the distance toward a randomly chosen vertex, v1, v2, or v3.
(4) Let this new point be x1.
(5) Repeat step (3) and (4) labeling each new point xi where i is the iteration
number.

Carrying on this process to infinity will produce the Sierpinski gasket. That is, using
the sequence (xi) created, the set Xi = {∪ni=1xi : xi ∈ R2} → S as n → ∞. Once
again this convergence is in the sense of the Hausdorff metric where

lim
i→∞

D(Xi, S) = inf{r > 0 : Xi ⊆ Nr(S) and S ⊆ Nr(Xi)} = 0

This is fascinating because a seemingly random process, first appearing chaotic,
eventually creates such intricate detail and beautiful images; hence the name, “the
chaos game”.

Altering the rules of the iterating function system can produce amazing computer
generated graphics, including ferns (Barnsley leaf), trees, mountain landscapes, and
many other objects. By incorporating certain probabilities one can generate simul-
taneously the randomness that nature has but also the incredible symmetry and
orderliness that nature has, thus creating realistic graphics that are not all copies of
the same pixelated image.

6 Fractal Dimension

Now that we have a little background in topology and measure theory we turn to
fractal dimensions. We already have the similarity dimension at our disposal, though
it is fairly weak and unhelpful. We also have the integer topological dimension, which
we called the covering dimension. Therefore, we look to find more generalizable and
precise definitions. We begin with the Hausdorff dimension and move to Packing
dimension afterwards.

6.1 Hausdorff Measure

Let S be a metric space. Using the set function cs(A) = (diam A)s we define the s-
dimensional Hausdorff outer measure, denoted Hs

. As with Lebesgue measure,
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when we restrict this to the measurable sets it is called s-dimensional Hausdorff
measure, denoted Hs.

Recall that one may have a countable cover of a set F ⊆ S. Suppose A is a family
of sets in a metric space S. A is a countable cover of a set F iff

F ⊆ ∪
A∈A

A,

and A is a countable family of sets. Furthermore, the cover A is an ε-cover for ε > 0
iff diam A ≤ ε for all A ∈ A.

Definition 6.1. We define the s-dimensional Hausdorff outer measure as

Hs

ε(F ) = inf
∑
A∈A

(diam A)s, (1)

where the infimum is over all countable ε-covers A of the set F .

In the 2 dimensional Euclidean space, the Hausdorff outer measure and Riemann
sums of integration have many parallel properties.

Note that there are a huge amount of possible coverings. However, in calculating the
Hausdorff outer measure a few things need to be true:
(1) All the sets A ∈ A must have a diameter ≤ ε,
(2) The familyAmust be countable, and of all the possible countable ε-covers we take
the one that gives us the infimum when we sum up the diameters of the countably
many sets.

Suppose that both A and B are two collections of set that form open covers of S,
and that B is subordinate to A. When computing the Hausdorff outer measure we
always use the subordinate family of sets. (Recall definition 3.1 for the definition of
refinement). We will have coverings of a set F that have mesh ≤ ε. Therefore, if a
refinement of A exists, we use it to compute Hausdorff outer measure. This helps
us get the smallest possible value when we sum up the diameters of the countably
many sets.

If we carry out a limiting process with epsilon we obtain the s-dimesional Hausdorff
outer measure. That is,

Hs
(F ) = lim

ε→0
Hs

ε(F ) = sup
ε>0
Hs

ε(F ) (2)

There are a few tips and shortcuts:
(i) To compute the Hausdorff measure for a compact set K we may use a finite cover.
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(ii) If we replace a set A in a cover A of F by a subset of itself, A′ ⊆ A, so that the
result is still a cover, then

∑
A∈A

(diam A)s becomes smaller.

(iii) When it is convenient we may assume that the sets used in the covers A of the
set F are subsets of F itself.

The Hausdorff measure essentially tries to efficiently cover a set F with a countable
ε-cover such that we minimize needlessly covering elements not in F and that we
minimize a “double” covering of elements in F .

Example: Let F = {0, 1} ⊂ R. We can find a countable cover A of F , say An =
(n−ε/2, n+ε/2) where n is an integer. The smallest possible covering of F using sets
from A are the two sets A1 ∪ A2 = (−ε/2, ε/2) ∪ (1− ε/2, 1 + ε/2). Using Lebesgue
measure we see that the length of each set is (n + ε/2) − (n − ε/2) = ε, that is
L(An) = ε. Moreover, diam An = ε. Therefore, by equations (1) and (2) as we take
a limiting process with epsilon going to 0 we get that Hs(F ) = 0, where F = {0, 1}.
Therefore, the Hausdorff dimension of the two element set F = {0, 1} is 0. We will
also show that H0(F ) = 2, showing that the Hausdorff measure can be a cardinality
measure.

The extension of the previous example is that for any finite set F we have Hs(F ) = 0
for all s > 0. This is because each finite point is covered by an open set from the
family of sets A that we can make arbitrarily small. Then, when we sum up all
the arbitrarily small diameters and take the infimum we can show that the set has
Hausdorff outer dimension equal to 0.

We can also say something about 0-dimensional Hausdorff measure. We know that
for any finite set F we have Hs(F ) = 0 for all s > 0. But if s = 0 we can see that
Hausdorff dimension becomes a function describing the cardinality of the set. From
our equations (1) and (2) we see that when s = 0 we have,

H0(F ) =

{
n if F has n elements,

∞ if F is infinite.

This is a very nice property of the Hausdorff dimension. Now, we continue to investi-
gate to see if it has more uses. Of particular interest is whether or not the Hausdorff
dimension corresponds to Lebesgue measure in 1 dimensional Euclidean space.

Theorem 6.2. The one dimensional Hausdorff measure H1 coincides with Lebesgue
measure L.
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This can be seen by setting s = 1 in the Hausdorff measure and comparing the
formula to Lebesgue measure. The diameter of any set A ∈ A corresponds with the
half-open intervals used in the Lebesgue measure.

What happens then when we examine the Hausdorff measure Hs(F ) as a function
of s for a given set F?

Theorem 6.3. Let F be a Borel set. Let 0 < s < t. If Hs(F ) <∞, then Ht(F ) = 0.
If Ht(F ) > 0, then Hs(F ) =∞.

So the Hausdorff measure as a function of s decreases as s increases. Moreover, there
is a unique critical value s0 ∈ [0,∞) such that

Hs(F ) =

{
∞ if s < s0;

0 if s > s0.

As a function of s, the Hausdorff dimension of a set F is a step function. This unique
critical value s0 is what we will call the Hausdorff dimension, denoted s0 = dim F.
This is what we have been searching for; a precise definition of dimension that fits
our elementary geometric definitions and can be abstracted to sets with non-integer
dimension.

Conveniently, for s = 0 the Hausdorff dimension is a measure of cardinality. This
is because the most efficient covering of a finite set is the collection of finitely many
ε/2-neighbourhoods of each of the elements. Raising ε/2 to the power of 0 gives 1, so
we essentially just count the number of elements to find the Hausdorff measure.

Let A,B be Borel sets. Some properties of Hausdorff dimension are:
(1) If A ⊆ B, then dim A ≤ dim B.
(2) dim(A ∪B) = max {dim A, dim B}.

Remark 6.4. As we had before, we may consider a function realizing a ratio. Let
f : S → T be a similarity with ratio r > 0. Let s be a positive real number, and let
F ⊆ S where S is a metric space. Then Hs

(f [F ]) = rsHs
(F ). So dim f [F ] = dim

F . Therefore, the Hausdorff dimension is not altered by similarity functions.

6.2 Packing Measure

There is another way to define a set’s dimension; packing dimension. Unlike the
Hausdorff dimension, which sought to cover a set F in the most efficient way using
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open sets and minimizing overlap or excess covering, the packing dimension (which
will be defined using the packing measure) works from the inside out. It seeks to
put disjoint sets inside F in the most efficient way trying to maximize the space by
filling (i.e. packing) as much of the set F as possible.

However, we must be careful how we pack. We could pack a square, F , using
arbitrarily thin sets Ai. Though the square may not be that “big” we could evaluate∑
i∈N

(diam Ai)
s to be as large as we like and hence we would be misled. In Euclidean

space the most natural packing shape is a cube, however we will use balls due to their
general application to metric spaces. Furthermore, we may desire that the whole ball
be contained in the set F we are measuring, but some sets contain no balls (i.e. a
line in R2). Therefore, we only require that the centre of the ball be contained in
the set F we are measuring.

Let S be a metric space and let us give some definitions that will help get to where
we are going.

Definition 6.5. A constituent in S is a pair (x, r), where x ∈ S and r > 0. We
may understand this to be the closed ball Br(x), where x is the center of the ball and
is contained in S and r is the radius.

Definition 6.6. Let E ⊆ S. A packing of E is a countable collection
∏

of con-
stituents, such that:
(1) for all (x, r) ∈

∏
, we have x ∈ E;

(2) for all (x, r), (y, s) ∈
∏

with (x, r) 6= (y, s) we have ρ(x, y) > r + s.

That is, the center point of every constituent lies in the set E under investigation.
Moreover, the second part ensures that two centers are far enough away from each
other such that the two constituents don’t overlap. The most common constituent
is a ball and therefore a packing is a collection of disjoint sets of closed balls whose
centers are in the set E.

Definition 6.7. For δ > 0, we say that a packing
∏

is δ-fine iff for all (x, r) ∈
∏

we have r ≤ δ.
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Now, we have the definitions to work and form the packing measure definition.

Definition 6.8. Let F ⊆ S, and let δ, s > 0. Define the Packing Measure to be:

Psδ(F ) = sup
∑

(x,r)∈
∏(2r)s

where the supremum is over all δ-fine packings
∏

of F .

As before, we take a limiting process, this time with δ → 0.

Ps0(F ) = lim
δ→0
Psδ(F ) = inf

δ>0
Psδ(F ) (3)

We get a family Ps0 of set functions indexed by s and once again there is a critical
value for each set F under examination.

This unique critical value s0 ∈ [0,∞) is such that, for a given set F we have:

Ps0(F ) =

{
∞ for all s < s0;

0 for all s > s0.

We shall call this critical value s0 the packing index for the set F .

By restricting our attention to measurable sets we obtain the s-dimensional pack-
ing measure Ps. Moreover, the critical value, as above, is called the packing
dimension of the set F . We denote the packing dimension as s0 = Dim F. The
packing dimension has many similar properties to the Hausdorff dimension.

Let A,B be Borel sets. Some properties of Packing dimension are:
(1) If A ⊆ B, then Dim A ≤ Dim B.
(2) Dim(A ∪B) = max {Dim A, Dim B}.

As we had before, we may consider a function realizing a ratio. Let f : S → T be a
similarity with ratio r > 0, let s be a positive real number, and let F ⊆ S be a set.
Then Ps(f [F ]) = rsPs(F ). So Dim f [F ] = Dim F .
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6.3 Fractal Definition

Now we have done enough leg work to get to a definition for a fractal. There are two
definitions, Mandelbrot and Taylor’s.

Definition 6.9. Mandelbrot defined a fractal to be a set A with Cov A < dim A.
Taylor defined a fractal saying, a set F ⊆ Rd is a fractal if and only if dim F =
Dim F .

Theorem 6.10. Let S be a metric space and F ⊆ S a Borel set. Then, in general
we have,

Hs(F ) ≤ 2sPs(F ) and dim F ≤ Dim F

Proof 6.11. We begin by showing that Hs

4ε(F ) ≤ 2sPsε(F ). In the first case, if
Psε(F ) = ∞, then the equation holds. Suppose then, that Psε(F ) < ∞. This implies
that there is a maximal finite packing, since any infinite packing of F , with all radii
equal to ε would give an infinite value to the s-dimensional packing measure.

Call this maximal finite packing of F,
∏

ε = {(x1, ε), (x2, ε), . . . , (xn, ε)}. Therefore,
by Definition 6.8 we have

Psε(F ) = sup
∑

(x,ε)∈
∏

ε

(2ε)s ≥ n(2ε)s

By the maximality, for any x ∈ F , there is some i such that ρ(x, xi) ≤ 2ε. Therefore,
the collection {B2ε(xi) : 1 ≤ i ≤ n} covers F , and

Hs

4ε(F ) ≤
n∑
i=1

(diam B2ε(xi))
s ≤ n(4ε)s = 2sn(2ε)s ≤ 2sPsε(F )

As ε→ 0 we get that Hs(F ) ≤ 2sPs0(F ). �

This leads us to the conclusion that dim F ≤ Dim F . This brings us back to
the definition of a fractal, according to Taylor. Generally speaking, dim F ≤ Dim
F . However, for special sets F we have that dim F = Dim F . These sets are
fractals.

Let us quickly apply Mandelbrot’s definition to the Sierpinski triangle to see that
it is a fractal. Utilizing Remark 6.4 we calculate the Hausdorrf dimension to be
dim S ≈ 1.585. Meanwhile, we can cover the Sierpinski triangle in a similar fashion
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as was done in Figure 4; with a family of balls whose order is 1 (any three balls has
empty intersection). Therefore, Cov S = 1 and we conclude, Cov S < dim S. This
confirms that the Sierpinski triangle is indeed a fractal.

7 Fractals and the Complex Plane

One of the beautiful aspects of mathematics is its consistency and symmetry within
itself. There are incredibly beautiful patterns, shapes and designs that all have
mathematical foundations. In the study of complex analysis and functions in the
complex plane, there arise wonderfully intricate shapes and designs. Seen in Figure
6 is the famous Mandelbrot Set and one particular Julia Set.

Figure 6: Mandelbrot and a Julia Set

7.1 Julia Sets

As was mentioned in the introduction, Julia Sets come about through an iterated
function system. Let τ : C→ C be a function defined by τ(z) = z2 + c, where c is a
fixed complex number. Then one can choose z ∈ C and begin an iteration.
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Example: Let c = −0.15 + 0.72i. Now, take z = 1 + 2i. The iteration becomes
(numbers rounded to 2 decimal places)

τ1(1 + 2i) = (1 + 2i)2 + (−0.15 + 0.72i)

τ2(−3.15 + 4.72i) = (−3.15 + 4.72i)2 + (−0.15 + 0.72i)

τ3(−12.51− 29.02i) = (−12.51− 29.02i)2 + (−0.15 + 0.72i)

...

τn(zn−1) = (zn−1)
2 + (−0.15 + 0.72i)

This iteration creates a sequence, τn, of complex numbers. In this particular case
the sequence diverges. However, there may be some complex number, z0 for which
the iterated function produces a convergent sequence. There are even complex num-
bers for which the iterated function produces a bounded sequence, not necessarily
convergent but perhaps oscillating between two finite values.

7.2 Mandelbrot Set

Many of the fractals investigated above were not random. However, many fractals
in the complex plane seem to be very random. The Mandelbrot set is the set of all
points c ∈ C such that, upon iteration, the function fc(z) = z2 + c, beginning at
z = 0, remains close to zero. It is impossible to note every element in the set. Even
two complex numbers, that are arbitrarily close to one another in the complex plane,
may have completely different sequences, one diverging to ∞ while the other point
remains close to 0 or converges to 0. In particular, the boundary of this set exhibits
complicated structures at all levels.

The mathematical complexities of the Mandelbrot set have yet to be studied in detail.
We do know that the Mandelbrot set is connected, though the proof is beyond the
scope of this paper. One can also note that the Mandelbrot set has a finite area.
Each of the complex numbers that lie in the Mandelbrot set, denoted M, are all
within a distance of 2 from the origin. That is, every z ∈ M lies inside the circle
with radius 2, otherwise denoted |z| ≤ 2. However, this doesn’t tell us the area of
the set M . In order to calculate the area of the set one would have to run infinitely
many iterations, all infinitely long. Therefore, finite estimates of the area is where
mathematics is currently at. The circle with radius 2 gives an upper bound area
of 12.6. Using the points furthest from the origin and forming a rectangle gives an
upper bound area of 5.5.
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When we discussed the Sierpinski gasket we concluded that S was more “compli-
cated” than being simply 1-dimensional. There is a measure of roughness to it’s
boundary that actually makes it 1.58 dimensional. Now, the Mandelbrot set has a
very complicated boundary. Therefore, we would assume that the dimension of its
boundary was greater than 1. In fact, the boundary is as wiggly, as complicated,
and as rough as possible. The dimension of the boundary for the Mandelbrot set is
2.

This is one of the reasons the Mandelbrot set is so fascinating: It encloses a finite
area (best approximations around 1.50648) with an infinitely long perimeter. Fur-
thermore, the perimeter is as rough as possible and is not totally self-similar, yet
has amazing local similarities and patterns that are incredibly aesthetically pleas-
ing.

8 Conclusion

We have seen 4 different notions of dimension. First, the covering dimension which
was an integer value achieved by covering a set F with a family of sets and examining
the intersection of n + 2 of the sets from the family. This gave us the topological
dimension of a set. Then, we discovered the similarity dimension, which was easy to
compute once a ratio list and iterated function system were defined. The similarity
dimension gave fractional values and rightly conveyed the “roughness” of a set, but
the severe limitations of similarity and not being well defined for sets only were
significant draw backs. Therefore, we defined the Hausdorff and Packing dimensions,
using coverings and packings respectively. Both of these notions of dimension gave
fractional values, were decreasing step functions of s, and were limiting processing
using ε-covers and δ-fine packings.

With these four definitions at our disposal we realized that Fractals are sets where
there are specific relationships between these notions of dimension: either Cov F < dim F
and/or dim F = Dim F .

In conclusion, fractals are sets with extremely complicated properties. Their bound-
aries may be infinitely intricate, their volume may be near impossible to calculate,
and yet they may look beautifully simple. The study of fractals will continue to be
a interesting field of mathematics and its physical applications (Brownian motion,
computer graphics, etc) will become more apparent with further study.
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