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Abstract

My honours project is on Poisson processes, which are named after the French mathe-
matician Siméon-Denis Poisson. The Poisson process is a stochastic counting process that
arises naturally in a large variety of daily-life situations. My main focus is to understand
Poisson processes. In this project, a brief historical review of this topic is provided, some
basic concepts, tools, several properties, and theoretical approaches for studying Poisson
processes are introduced and discussed. We will further briefly discuss how to use Poisson
processes to model scoring in a hockey game.
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CHAPTER 1

Introduction

The purpose of this project is to introduce Poisson processes, study some of the basic
properties of Poisson processes, and make an application of the properties covered. We
will show that we can use Poisson processes to model the number of goals scored in a
hockey game and determine the likelihood of a given team winning. Poisson processes are
also useful to model radioactive decay, telephone calls, and many other phenomena.

1. Probability Review

This section reviews some basic concepts and definitions of probability theory which
will used throughout this project.

Definition 1.1. A binomial experiment (Bernoulli trial) is a statistical experiment
in which outcomes are categorized as either a success with probability p or failure with
probability q = (1− p).

Example 1.2. Consider flipping a coin n times and counting the number of heads
that occur. This is a binomial experiment with the probability of success (Heads) has
probability p = 0.5.

Definition 1.3. A random variable is a set of of possible outcomes, where the prob-
ability of each outcome is given by the probability density function.

There are two types of random variables, discrete random variables and continuous
random variables. This project will only be working with discrete random variables.

Definition 1.4. A discrete random variable is random variable that has a finite or
countable number of outcomes.

Example 1.5. Let X represent the outcome when rolling a fair D6, the random
variable X is a discrete random variable with the following outcomes X = {1, 2, 3, 4, 5, 6}

Definition 1.6. A probability density function (pdf) is a function that describes the
likelihood for a random variable to take on a given value.

P{X = x} = f(x)

where f(x) ≤ 1 for all x and
∑
f(x) = 1 .

Definition 1.7. Given two random variables X and Y the joint probability density
function defines the probability of events in terms of both X and Y .
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Chapter 1. Introduction 2

Definition 1.8. The conditional probability is the probability that an event A will
occur, when a given event B is known to occur. This is said to be the “probability of A
given B”, denoted P{A|B}.

Definition 1.9. Two random variables, X and Y are independent if and only if they
have a joint density function such that

f(x, y) = f(x)f(y).

In other words P{X = x and Y = y} = P{X = x}P{Y = y}.

Definition 1.10. Let X be a discrete random variable with density function f . The
expected value or mean of X denoted E[X], is given by

E[X] =
∑
all x

xf(x)

provided E[X] =
∑

all x xf(x) is finite. The summation is over all values of X with
nonzero probability.

Definition 1.11. Let X be a discrete random variable with mean µ. The variance
of X, denoted by VarX is given by

Var X = E[X2]− E[X]2.

Definition 1.12. A stochastic process {Nt : t ≥ 0} is a collection of random variables
indexed by a totally ordered set.

Definition 1.13. A stochastic process {Nt : t ≥ 0} is said to be a counting process if
Nt represents the total number of events or arrivals that have occurred up to time t > 0,
such that the following properties hold

(1) Nt ≥ 0
(2) Nt is non negative integer valued.
(3) If s ≤ t then Ns ≤ Nt

(4) If s < t then Nt−Ns is the number of events that have occurred in interval (s, t]

Example 1.14. If Nt represents the number of goals scored in a hockey game by time
t, then Nt is a counting process. On the contrary, if Xt represents the goal differential in
a hockey game at time t, then it is not a counting process.

2. Is Scoring in Hockey Poisson?

For events to follow a Poisson process they must have three properties; events must be
random, rare, and memoryless. Being random means that events occur with no apparent
pattern. For hockey this is mostly the case, except when teams pull their goalies. If
an event is rare it means that an event could occur many times but only occurs a few
times. As a rule an event can be considered rare for the number of trials n ≥ 100 and
the probability of success p ≤ 0.10. In ice hockey scoring a goal takes only seconds, so
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a game that lasts at least 60 minutes could potentially have hundreds of goals scored. If
events are memoryless then the probability of the next event occurring does not depends
on previous events. If scoring in hockey is not memoryless then goals would occur in
bunches similar to baseball.

We can see that goals in hockey are indeed rare, memoryless and for the most part
they are random, the exception is during the final minutes of the third period when teams
are trailing by one or two goals, they pull the goalie for a extra attacker in the attempt to
score late goals to send the game to overtime. In the 2011-2012 NHL season there were
238 empty net goals scored. It is a reasonable assumption that all the empty net goals
were scored during the final minutes of the third period since it is extremely rare for a
team to pull the goalie at any other time in the game. In [3] the author discusses this
phenomena in more detail and calls it the “end game effect”.

In the 2011-2012 NHL season there were a total of 6545 goals scored, 6426 in regulation
and 119 in overtime. Breaking down goals scored by period we see that number of goals
scored in the second and third periods are nearly identical (2nd 2254, 3rd 2248), while
there were 1924 goals scored in the first period. There are many factors that can lead to
teams scoring less in the first period, but for the most part we can see that goals a evenly
distributed throughout the game.

In Chapter 2 this project will introduce the Poisson distribution, give a extremely
brief history about the Poisson distribution and prove some of its important properties.
Chapter 3 will focus on defining Poisson processes and studying some of the properties
of independent Poisson processes. Chapter 4 we use Poisson processes to model hockey
game, and provide a method to determine what team will win a given game.



CHAPTER 2

Poisson Distribution

Before we can begin to study the properties of Poisson processes we need to review
some properties of the Poisson distribution. This section will have a brief historical review
of the Poisson distribution, cover some of its properties, and give two examples that follow
Poisson distribution.

1. History and Definitions

Definition 2.1. Let X be a binomial random variable. Then the probability of
getting exactly x successes in n trials is

P (X = x) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x.

where p is the probability of a success. We say X has binomial distribution.

The Poisson distribution was derived by Siméon Denis Poisson (1781-1840) a French
mathematician, physicist, and geometer. It was discovered as a result of Poisson’s dis-
cussion of The Law of Large Numbers in his work “Recherches sur la probability des
jugements en matiére criminelle et en matiére civile” (Research on the Probability of
Judgments in Criminal and Civil Matters) published in 1837. In the chapter “the law
of large numbers”, Poisson said the probability of the number of occurrences of an event
denoted E will fall within certain limits. Using the binomial distribution, he found that
for large values of n that it was simpler to let n tend to infinity and p tend to zero, to
avoid the growing factorial. This concept is now known as the Law of Small Numbers.

Poisson’s observation was not noticed by the public until 1898 when Ladislaus von
Bortkiewicz (1868-1931), a professor at University of Berlin, illustrated the importance
of Poisson’s formula in a monograph entitled “The Law of Small Numbers”. Poisson’s
distribution was used by Ladislaus von Bortkiewicz to model the number of deaths by
accidental horse kick in the Prussian army.

The Poisson distribution is one of the most important probability distributions in the
field of probability. A Poisson distribution is the probability distribution that results from
a Poisson experiment.

Definition 2.2. A Poisson experiment is a statistical experiment that has the fol-
lowing properties:

4



Chapter 2. Poisson Distribution 5

(1) The experiment results in outcomes that can be classified as successes or failures.
(2) The average number of successes, denoted λ, that occurs in a specified region is

known.
(3) The probability that a success will occur is proportional to the size of the region.
(4) The probability that a success will occur in an extremely small region is virtually

zero.

(Note: The specified region may take on many forms, for example length, area, volume,
time)

Definition 2.3. A Poisson random variable is the number of successes that result
from a Poisson experiment.

Definition 2.4. Suppose we conduct a Poisson experiment, in which λ is the average
number of successes within a given region. Let X be the number of successes that result
from the experiment. Then

P{X = x} = f(x) =
λx

x!
e−λ x ∈ N , λ > 0

where x is the number of successes and e is the natural logarithm. Then X has Poisson
distribution denoted X ∼ Pλ .

The Poisson distribution is useful because many random events follow it. We give
some examples below,

Example 2.5. The occurrence of a major earthquake could be considered to be a
random event. If there are an average of 5 major earthquakes each year, then the number
X of major earthquakes in any given year will have a Poisson distribution with parameter
λ = 5

The Poisson distribution can be used as an approximation to the binomial distribution.
For those situations in which n is large and p is very small, the Poisson distribution can
be used to approximate the binomial distribution. Let X be a binomial random variable
with parameters n and p. Then

P{X = x} =

(
n

x

)
px(1− p)n−x, x ∈ {1, 2, 3, . . . , n}.

If n is large and p is very small then,

P{X = x} ≈ (np)x

x!
e−np x ∈ {1, 2, . . . , n}

The larger the n and smaller the p, the closer the approximation becomes.

Example 2.6. There are 50 misprints in a book which has 250 pages. We will find
the probability that page 100 has no misprints. Let X be the number of misprints on
page 100. Then X follows a binomial distribution with n = 50 and p = 1

250
. Since n
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is large and p is small, by using the Poisson distribution to approximate the binomial
distribution, we find:

P{X = 0} ≈
(50 1

250
)0

0!
e−50 1

250 = e−0.2 ≈ .0819

2. Basic Properties of Poisson Distributions

Recall that X ∼ Pλ if

f(x) = P{X = x} =
λx

x!
e−λ x ∈ N, λ > 0

Let us verify that this is indeed a probability density function (pdf) by showing that the
sum of f(x) over all x ≥ 0 is 1. We have

∞∑
x=0

f(x) = e−λ
∞∑
x=0

λx

x!
.

This last sum is the power series formula for, eλ, so

e−λ
∞∑
x=0

λx

x!
= e−λeλ = 1.

Theorem 2.7. If X ∼ Pλ then E[X] = λ and Var X = λ.

Proof. First we will prove that E[X] = λ. This is a simple exercise in series manip-
ulation. We begin by noticing that

E[X] =
∞∑
x=0

xf(x) =
∞∑
x=1

x
e−λλx

x!
.

Noting that

n! = n · (n− 1)! · (n− 2)! · · · 2 · 1,

we see that x
x!

= 1
(x−1)!

. So, pulling out e−λ and canceling x, we see that

E[X] = e−λ
∞∑
x=1

λx

(x− 1)!
= λe−λ

∞∑
x=1

λx−1

(x− 1)!
.

(Note that the term x = 1 has 0! in the denominator.)
Setting m = x− 1, we find

E[X] = λe−λ
∞∑
m=0

λm

m!
= λe−λeλ,

and we are done.
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Now we will prove VarX = λ. Again we will make use of some simple series manipu-
lation. By definition the variance is

VarX = E[X2]− (E[X]2) =
∞∑
x=0

x2f(x)− (
∞∑
x=0

xf(x))2.

Since we have just proved that E[X] = λ we know that (E[X]2) = λ2, which just leaves
us with finding the value of E[X2].

E[X2] =
∞∑
x=0

x2f(x) =
∞∑
x=0

x2 e
−λλx

x!
.

As above we can see that

E[X2] = e−λ
∞∑
x=1

x
λx

(x− 1)!
= λe−λ

(
∞∑
x=1

(x− 1)
λx−1

(x− 1)!
+
∞∑
x=1

λx−1

(x− 1)!

)
.

= λe−λ

(
λ
∞∑
x=2

λx−2

(x− 2)!
+
∞∑
x=1

λx−1

(x− 1)!

)

Letting i = x− 1 and j = x− 2, we find that

E[X2] = λe−λλ

(
∞∑
j=0

λj

j!
+
∞∑
i=0

λi

i!

)
= λe−λ(λeλ + eλ) = λ2 + λ.

When we substitute the values of E[X] and E[X2] into the definition of VarX we get

Var X = E[X2]− (E[X]2) = λ2 + λ− λ2 = λ

and we are done. �

Theorem 2.8. Let X ∼ Pλ1 and Y ∼ Pλ2. If X and Y are independent, then
X + Y ∼ Pλ1+λ2.

Proof. By definition we say X and Y are independent if and only if, P{X =
x and Y = y} = P{X = x}P{Y = y}. Now letting

Z = X + Y
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we have that

P{Z = z} = P{X + Y = z} =
∑
x,y≥0
x+y=z

P{X = x and Y = y}

=
∑
x,y≥0
x+y=z

P{X = x}P{Y = y}

=
∑
x,y≥0
x+y=z

e−λ1λx1
x!

· e
−λ2λy2
y!

= e−(λ1+λ2)
∑
x,y≥0
x+y=z

λx1λ
y
2

y!x!

To finish the proof we require a little trick. We begin by recognizing that x!y! is the
denominator of

z!

x!y!
=

(
z

x

)
=

(
z

y

)
.

So, we multiply by a factor of z!
z!

we have

P{Z = z} =
e−(λ1+λ2)

z!

∑
x,y≥0
x+y=z

(
z

x

)
λx1λ

y
2.

Notice that from the binomial theorem we deduce that∑
x,y≥0
x+y=z

(
z

x

)
λx1λ

y
2 = (λ1 + λ2)z.

So

P{Z = z} = e−(λ1+λ2) (λ1 + λ2)z

z!
.

and therefore Z has a Poisson distribution with parameter λ1 + λ2 as claimed. �

3. Applications

This section will briefly discuss two of the many possible applications of the Poisson
distribution. The first example is to demonstrate that scoring in hockey does indeed
follow a Poisson distribution. The second example is a interesting example regarding
prime numbers from [8], more information on the distribution of prime numbers can be
found in [7].
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3.1. Scoring in Hockey. If we are to assume that scoring in hockey follows a Poisson
process then there are some things that we should be able to predict. In the 2011-2012
NHL season there were 6545 goals scored giving an average λ = 2.66 goals/game. To find
the probability of a shut-out we simply need to compute P{X = 0}.

P{X = x} =
e−λλx

x!
⇒ P{X = 0} =

e−2.662.660

0!
= .06995.

This is the probability of a team scoring zero goals in a game. Because there are 2460
games in a season, so the expected number of shutouts in a season is 2460× .06995 ≈ 172
(actual 177).

3.2. Prime Numbers. Prime numbers are very important numbers to many areas
of mathematics. A prime number is an integer n ∈ N that is only divisible by ±1 and ±n
itself. It turns out that prime numbers in short intervals obey a “Poisson distribution”.
To discuss this, we need to look at the Prime Number Theorem:

Theorem 2.9. (Prime Number Theorem): The number of primes p ≤ x has size about
x/ log x, where here the log is to the base-e. That is, if π(x) denotes this number of primes
less then or equal to x, then

π(x) ∼ x/ log x.

This means that

lim
n→∞

π(x)

x/ log x
= 1.

In what follows, we will use the notation π(I) to denote the number of primes in a
given interval I.

Now suppose that x is a “really large” number , say x = 10100. Then, if you pick a
number n ≤ x at random, there is about a 1/100 log(10) (about 0.43 percent) chance that
it will be prime; and we expect that a typical interval [n, n + log n] ⊂ [1, x] will contain
about one prime.

In fact, much more is true. If we pick n ≤ x at random, and choose λ > 0 and j not
too large (say λ, j ≤ 20), then the number of primes in [n, n + λ log n] roughly obeys a
Poisson distribution:

P{π([n, n+ λ log n]} = j ≈ e−λλj

j!
.

Notice that we do not have an equality; in order to get an equality we would have to let
x→∞ in some way. Certainly the larger we take x to be, the close the above probability
comes to

e−λλj

j!



CHAPTER 3

Poisson Process

In this Chapter we will define Poisson process in two different ways, and discuss how
Poisson processes can be combined or broken down.

1. Defining Poisson Processes

There are three different ways to define Poisson processes: using arrivals, using the
inter-arrival times, or using differential equations. This section will define a Poisson
process by the arrivals and determine the distributions of the arrivals and the inter-
arrival times. Constructing Poisson processes with the inter-arrival times and differential
equations is left out due to the length of this project. More information on the other
methods of defining Poisson processes can be found in [6].

1.1. Arrivals. Consider Nt the number of arrivals by time t ≥ 0. The counting
process Nt is said to be a Poisson process if it satisfies the following properties:

(1) The number of arrivals that occur during one interval of time does not depend
on the number of arrivals that occur over a different time interval.

(2) The “average” rate at which arrivals occur remains constant.
(3) Arrivals occur one at a time.

Though these properties help us understand the Poisson process, in order to make use of
them we need to make them more mathematically precise.

(1) For the first property let t1 ≤ t2 ≤ t3 ≤ t4, then the random variables Nt2 −Nt1 ,
and Nt4 −Nt3 are independent.

(2) The second property says that the number of arrivals after time t should be λt.
(3) The third property indicated that the probability of more then one arrival occur-

ring in a small time interval is extremely unlikely. This can be written as:

P{Nt+∆t −Nt = 0} = 1− λ∆t+ o(∆t),(1.1)

P{Nt+∆t −Nt = +1} = λ∆t+ o(∆t),(1.2)

P{Nt+∆t −Nt ≥ 2} = o(∆t).(1.3)

where ∆t is a small time interval and o(∆t) is a function such that

lim
∆t→0

o(∆t)

∆t
= 0

10
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Now that we have a definition of the Poisson process that we can use, we will determine
the distribution of Nt. We divide the time interval [0, t] into n intervals, and write

Nt =
n∑
j=1

[N j
n
t −N (j−1)

n
t
].

We have rewritten Nt as the sum of n independent, identically distributed random vari-
ables. For a large number n, P [Nt/n ≥ 2] = o(t/n) by (1.3). So we can approximate Nt

by a sum of independent random variables that equal:

• 1 with probability λ(t/n).
• 0 with probability 1− λ(t/n).

Using the formula for the binomial distribution,

P{Nt = x} ≈
(
n

x

)
(λt/n)x(1− (λt/n))n−x.

We can then show:

P{Nt = x} = lim
n→∞

(
n

x

)
(λt/n)x(1− (λt/n))n−x.

To take this limit, note that

lim
n→∞

(
n

x

)
n−x = lim

n→∞

n(n− 1)(n− 2) · · · (n− x+ 1)

x!nx
=

1

x!

and

lim
n→∞

(1− λt

n
)n−x = lim

n→∞
(1− λt

n
)n lim

n→∞
(1− λt

n
)−x = e−λt.

Hence,

P{Nt = x} = e−λt
(λt)x

x!
,

so Nt has a Poisson distribution with parameter λt.
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1

2

3

4

Time

Nt

0 T1 T2 T3 T4

The above figure shows Nt over time.

1.2. Inter-arrival Times. The second way we can define the Poisson process is by
considering the time between arrivals. Let τn, n ∈ N be the time between the nth and
(n− 1)st arrivals. Let Tn = τ1 + τ2 + · · ·+ τn be the total time until the nth arrival. We
can write

Tn = inf{t : Nt = n},

τn = Tn − Tn−1.

The τi should be independent, identically distributed random variables. The τi should
also satisfy the memoryless property. That is if there is no arrival in time [0, s], then
the probability of an arrival occurring in the interval [s, t] is the same as if arrivals had
occurred in [0, s]. This can be written mathematically as

P{τi ≥ s+ t|τi ≥ s} = P{τi ≥ t}.

The only real-valued functions that satisfy f(t + s) = f(t)f(s) are f(t) = 0 for all t, or
f(t) = e−λt. The function f(t) = 0 contradicts the third property of the Poisson process,
since if there is a 0 probability of Nt = 0 no matter how small t is, then there must be a
infinite number of arrivals in any interval. Thus the τi is exponentially distributed.

Definition 3.1. A random variable X has exponential distribution with rate pa-
rameter λ if it has probability density function given by

P{X = x} = f(x) = λe−λx, 0 < x <∞.

This gives us another method of constructing a Poisson process.
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Nt = N1
t +N2

t ? ?? ? ? ? ?? ?? ?

N2
t ? ? ? ? ? ?

N1
t ? ? ?? ?

The above figure shows the superposition Nt of 2
independent Poisson processes N1

t and N2
t

2. Some Properties of Poisson Processes

This section will go over some important properties of independent Poisson processes.

2.1. Superposition of Poisson Processes.

Example 3.2. Consider a store that has two entrances, A and B. Let NA
t count the

number of customers that arrive at entrance A with rate λAt, and NB
t count the number

of customers that arrive at entrance B with rate λBt. Determine the total number of
customers arriving to the store by time t.

To determine the number of customers that arrive by time t, we need to consider the
counting process Nt = NA

t +NB
t .

Theorem 3.3. Let N1
t and N2

t be Poisson processes such that, Nt = N1
t +N2

t . Since
Nt, for t ≥ 0, is the sum of two independent Poisson random variables, it is also a Poisson
random variable with expected value λt = λ1t+ λ2t

Proof. To prove this we will use the same method as with proving the sum of two
Poisson random variables is Poisson. We begin by recalling the definition of independence,
that is, P{X = x and Y = y} = P{X = x}P{Y = y}. Then we have

P{Nt = n} = P{N1
t +N2

t = n} =
∑
x,y≥0
x+y=n

P{N t
1 = x and N t

2 = y}

=
∑
x,y≥0
x+y=n

P{N1
t = x}P{N2

t = y}

=
∑
x,y≥0
x+y=n

e−λ1t(λ1t)
x

x!
· e
−λ2t(λ2t)

y

y!

= e−t(λ1+λ2)
∑
x,y≥0
x+y=n

(λ1t)
x(λ2t)

y

y!x!
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So, we multiply by a factor of n!
n!

we have

P{Nt = n} =
e−t(λ1+λ2)

n!

∑
x,y≥0
x+y=n

(
n

x

)
(λ1t)

x(λ2t)
y.

From the binomial theorem we deduce that

∑
x,y≥0
x+y=n

(
n

x

)
(λ1t)

x(λ2t)
y = (λ1t+ λ2t)

n.

So

P{Nt = n} = e−t(λ1+λ2) (λ1t+ λ2t)
n

n!

Therefore we have proven Nt also has a Poisson distribution with parameter λ1t+ λ2t as
claimed. �
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Nt ? ?? ? ? ? ?? ?? ?

N2
t ? ? ? ? ? ?

N1
t ? ? ?? ?

The above figure shows the thinning of the Poisson process Nt.

2.2. Thinning Poisson Processes. Now that we have shown that a Poisson process
Nt can be constructed by the superposition of two independent Poisson processN1

t andN2
t ,

we will now look at how to split a Poisson process Nt with rate λt in to two independent
Poisson processes.

Suppose we have a Poisson process Nt with rate λt. for each arrival toss a unfair coin
with the probability of heads p and the probability of tail q = (1− p). Then the process
N1
t counts the number of heads with rate pλt and N2

t counts the number of tails with rate
qλt = (1− p)λt.

Theorem 3.4. A Poisson process Nt with rateλt can be split into independent Poisson
processes N1

t and N2
t with rates pλt and (1− p)λt respectively.

Proof. To show that N1
t and N2

t are independent we first need to calculate the joint
pdf of N1

t and N2
t for t arbitrary. Determining the conditional probability on a given

number of arrivals Nt for the original process, we have

(2.1) P{N1
t = m,N2

t = n|Nt = m+ n} =
(m+ n)!

m!n!
pm(1− p)n

This is simply the binomial distribution since the m + n arrivals to the original process
independently goes to N1

t with probability p and N2
t with probability (p− 1). Since the

event {N1
t = m,N2

t = n} is a subset of the conditioning event above.

(2.2) P{N1
t = m,N2

t = n|Nt = m+ n} =
P{N1

t = m,N2
t = n}

P{Nt = m+ n}
Combining (2.1) and (2.2), we have

(2.3)
(m+ n)!

m!n!
pm(1− p)nλt

m+ne−λt

(m+ n)!

Rearranging terms we find.

(2.4) P [N1
t = m, N2

t = n] =
(pλt)me−λpt

m!

((1− p)λt)ne−λ(1−p)t

n!

This shows that N1
t and N2

t are independent. �
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We have now seen that a single Poisson process can be split into two independent
Poisson processes. The most useful consequence is that, if we allow Nt = N1

t + N2
t

with rate λt = λ1t + λ2t then each arrival in the combined process is labled as N1
t with

probability p = λ1
λ1+λ2

and N2
t with probability 1− p.



CHAPTER 4

Applying Poisson Process to Hockey

In this section we will use the Poisson process to model scoring in a hockey game.
This section will also briefly introduce a new distribution that is vital in determining the
outcome of the game.

1. A Basic Model

One of the most important things to sports analysts, fans, and the gambling commu-
nity is having the ability to predict the outcome of a sports match between two teams.
Now that have we covered some of the basic properties of Poisson processes and also shown
that scoring in hockey is basically a Poisson process, we are now able to use properties
of Poisson processes to predict outcomes of a hockey game. Let Nt represent the total
number of goals scored in time t with rate λt. If we let N1

t and N2
t represent the number

of goals scored by Team 1 and Team 2 with rates λ1t and λ2t respectively. We can see
that Nt = N1

t + N2
t and λt = (λ1 + λ2)t. From here there are several things that we

can easily see, including the expected number of goals scored the expected time till the
first goal is scored, and which team is expected team to score first. However we are still
unable to determine the probability of Team 1 winning (N1

t > N2
t ), the probability of a

tie (N1
t = N2

t ), and the probability of Team 2 winning (N2
t > N1

t ). In order to determine
the probability of a given team winning we need to consider the goal differential to do
this we need to introduce the Skellam distribution.

Definition 4.1. If X and Y are independent random variables with rates λ1 and λ2

receptively. The difference Z = X + Y follows a Skellam distribution with probability
density function.

P{Z = X − Y = z} = S(z) = e−(λ1+λ2)(
λ1

λ2

)

z
2

I|z|(2
√
λ1λ2)

Where I|x|() is the modified Bessel function of the first kind of order x.

Definition 4.2. The modified Bessel function of the first kind of order n denoted
In(x) where n is a integer can be written as.

In(x) =
1

π

∫ π

0

ez cos θ cos(nθ)dθ

More information on the Skellam distribution and Bessel functions can be found in
[9] and [10]

17
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We set Xt = x to be the goal differential at time t (i.e Xt = N1
t −N2

t ). If x > 0 then
Team 1 is winning by x goals at time t, if x < 0 then Team 2 is winning by x goals at
time t, and if x = 0 the game is tied at time t.

2. How will the Game End?

This section will cover the probability of each possible outcome of a given hockey
game.

2.1. End of the 3rd Period. If we are to assume that the game ends when time
expires in the third period, then to compute the probability of a team winning we simply
need to determining the probability of the Skellam distribution for values of x. That is:

(1) Team 1 will win after the third period with probability

P{N1
t −N2

t = x > 0} =
∑
x>0

S(x) =
∑
x>0

e−(λ1+λ2)(
λ1

λ2

)

x
2

I|x|(2
√
λ1λ2)

(2) Team 2 will win after the third period with probability

P{N1
t −N2

t = x < 0} =
∑
x<0

S(x) =
∑
x>0

e−(λ1+λ2)(
λ2

λ1

)

x
2

I|x|(2
√
λ1λ2)

(where S(x) is the Skellam distribution at x, and N1
t and N2

t have rates λ1 and λ2

respectively.)

Current rules in NHL forbid the outcome of a game to be a tie. If after 60 minutes of
play the score is tied, the teams play additional time to determine a winner. This added
time is called “overtime”.

3. Overtime

When we are trying to predict the outcome of a game, it is important to know whether
the game in question is a playoff game or is a regular-season game as the overtime rules
differ. To avoid any confusion when explaining the rules of overtime, I have copied the
relevant information from Rule 84 “Overtime” in the NHL rule book [5].

3.1. Playoffs. In the Stanley Cup Playoffs, when a game is tied after three (3) twenty
(20) minute regular periods of play, the teams resume playing twenty (20) minute periods,
changing ends for the start of each overtime period. The team scoring the first goal in
overtime shall be declared the winner of the game.

We start by determining how a team would win in playoff overtime, since this is the
easiest case. We have shown that we can model goals scored as independent Poisson
processes with rates λ1 and λ2 per game (60 min), respectively. Team 1 wins if the first
goal produced in overtime is from N t

1, this event has probability λ1/(λ1 + λ2).
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(1) The probability that Team 1 will win a playoff game in OT is:

S(0)
λ1

(λ1 + λ2)

(2) The probability that Team 2 will win a playoff game in OT is:

S(0)
λ2

(λ1 + λ2)

(where S(0) is the probability the teams will be tied at the end of regulation, P{X =
0} = S(0))

3.2. Regular-season. During regular-season games, if at the end of the three (3)
regular twenty (20) minute periods, the score shall be tied. The teams will then play an
additional overtime period of not more than five (5) minutes with the team scoring first
declared the winner. The overtime period shall be played with each team at a numerical
strength of four (4) skaters and one (1) goalkeeper.

For the regular-season the probability of a team scoring first in overtime remains the
same, however the fact that regular-season over time lasts only 5 minutes adds an extra
condition. The game winning goal must be scored within the first 5 minutes (t = 1

12
since

λ1 and λ2 are goals per 60 minute).

(1) The probability of Team 1 winning a regular-season game in OT is:

S(0)
λ1

(λ1 + λ2)
(1− e−

1
12

(λ1+λ2))

(2) The probability of Team 2 winning a regular-season game in OT is:

S(0)
λ2

(λ1 + λ2)
(1− e−

1
12

(λ1+λ2))

(where S(0) is the probability the teams will be tied at the end of regulation, P{X =
0} = S(0))

3.2.1. Shootout. During regular-season games, if the game remains tied at the end of
the five (5) minute overtime period, the teams will proceed to a shootout. The rules
governing the shootout shall be the same as the rules for Penalty Shots. The home team
shall have the choice of shooting first or second. The teams shall alternate shots. Three
(3) players from each team shall participate in the shootout and they shall proceed in such
order as the Coach selects. If after each teams players have gone and the score remains
tied, the shootout will continue until a winner is decided.

When determining the probability of winning in shootout we assume that each team
has a equal chance to win. So the probability of a game going to shootout is e−

1
12

(λ1+λ2)

which is the probability P{N 1
12

= 0} that no goal is scored in overtime. The total

probability of winning in shootout is 0.5e−
1
12

(λ1+λ2).
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3.3. Who will Win? Now we have covered the probabilities of each possible outcome
of a NHL game, to determine the probability of a team to win a game we need only to
sum the probabilities of a team winning in each scenario.

(1) If the game in question is a regular season then the probability that Team 1 will
win is,∑

x>0

S(x) + S(0)

(
λ1

(λ1 + λ2)
(1− e−

1
12

(λ1+λ2)) + 0.5e−
1
12

(λ1+λ2)

)
(2) If the game in question is a playoff game then the probability that Team 1 will

win is, ∑
x>0

S(x) + S(0)
λ1

(λ1 + λ2)

4. Additional Notes

This simple model assumes that the scoring rate λt is constant. Though this is good
to establish the basic idea, assuming that scoring is constant could hurt the accuracy of
the model. One of the ways that we can improve the accuracy of the model would be to
let λ(t) be a rate that is dependent on time. This is called a non-homogeneous Poisson
process.

Definition 4.3. A non-homogeneous Poisson process with arrival rate λ(t) a function
of time, is defined as a counting process {Nt | t > 0} which has the independent increment
property and, satisfies;

P{Nt+dt −Nt = 0} = 1− λ(t)dt+ o(dt),

P{Nt+dt −Nt = 1} = λ(t)dt+ o(dt),

P{Nt+dt −Nt ≥ 2} = o(dt)

for all t ≥ 0, dt > 0 the number of arrivals in time t satisfies

P{Nt = x} =
m(t)xe−m(t)

x!
where m(t) =

∫ t

0

λ(u)du

Using a non-homogeneous Poisson process with rate λ(t) would improve the accuracy
of the model since we are able to adjust the scoring rate for different values of t, to
compensate for the lack of scoring in the first period and the influx of goals in the last
minutes.

What we now have is a method of determining what team will win a hockey game.
We have assumed that Team 1 and Team 2 have scoring rates λ1 and λ2. But how do
we determine what the values of λ? This topic had to be left out do to size restrictions,
for more information on estimating λ, as well as a good method for collecting and sorting
data can be found in [4].
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Poisson processes are a very powerful tool for determining the probability of random
events occurring over time. There is a wide range of phenomena that can be modeled using
Poisson processes including but not limited to: scoring in some team sports, radioactive
decay, and queuing theory. I have found that hockey, and soccer are Poisson processes
and it is relatively easy to create models for since goals are always one point, I believe
that football may also be Poisson and will be looking more into this in the future. Overall
while a simple model like this may have little practical value, they are extremely useful
for is providing insight into the problem at hand.
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